These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
468 related articles for article (PubMed ID: 30248841)
1. Hydrogeochemical evidences for targeting sources of safe groundwater supply in arsenic-affected multi-level aquifer systems. Du Y; Deng Y; Ma T; Lu Z; Shen S; Gan Y; Wang Y Sci Total Environ; 2018 Dec; 645():1159-1171. PubMed ID: 30248841 [TBL] [Abstract][Full Text] [Related]
2. Pollutant sources in an arsenic-affected multilayer aquifer in the Po Plain of Italy: Implications for drinking-water supply. Rotiroti M; McArthur J; Fumagalli L; Stefania GA; Sacchi E; Bonomi T Sci Total Environ; 2017 Feb; 578():502-512. PubMed ID: 27836337 [TBL] [Abstract][Full Text] [Related]
3. Iron isotope evidence for arsenic mobilization in shallow multi-level alluvial aquifers of Jianghan Plain, central China. Yang Y; Deng Y; Xie X; Gan Y; Li J Ecotoxicol Environ Saf; 2020 Dec; 206():111120. PubMed ID: 32861962 [TBL] [Abstract][Full Text] [Related]
4. Hydrogeochemical contrast between brown and grey sand aquifers in shallow depth of Bengal Basin: consequences for sustainable drinking water supply. Biswas A; Nath B; Bhattacharya P; Halder D; Kundu AK; Mandal U; Mukherjee A; Chatterjee D; Mörth CM; Jacks G Sci Total Environ; 2012 Aug; 431():402-12. PubMed ID: 22706147 [TBL] [Abstract][Full Text] [Related]
5. Hydrochemical evaluation and identification of geochemical processes in the shallow and deep wells in the Ramganga Sub-Basin, India. Rajmohan N; Patel N; Singh G; Amarasinghe UA Environ Sci Pollut Res Int; 2017 Sep; 24(26):21459-21475. PubMed ID: 28744685 [TBL] [Abstract][Full Text] [Related]
6. Nitrogen contamination in groundwater in an agricultural region along the New Silk Road, northwest China: distribution and factors controlling its fate. Chen J; Qian H; Wu H Environ Sci Pollut Res Int; 2017 May; 24(15):13154-13167. PubMed ID: 28357801 [TBL] [Abstract][Full Text] [Related]
7. Distribution, formation and human-induced evolution of geogenic contaminated groundwater in China: A review. Jia Y; Xi B; Jiang Y; Guo H; Yang Y; Lian X; Han S Sci Total Environ; 2018 Dec; 643():967-993. PubMed ID: 29960233 [TBL] [Abstract][Full Text] [Related]
8. Constraints on vertical variability of geogenic ammonium in multi-layered aquifer systems. Liu W; Du Y; Qiu W; Deng Y; Wang Y Water Res; 2025 Jan; 268(Pt A):122639. PubMed ID: 39427347 [TBL] [Abstract][Full Text] [Related]
9. Hydrogeochemical and isotopic evolution of groundwater in shallow and deep aquifers of the Kabul Plain, Afghanistan. Zaryab A; Farahmand A; Nassery HR; Alijani F; Ali S; Jamal MZ Environ Geochem Health; 2023 Nov; 45(11):8503-8522. PubMed ID: 37646919 [TBL] [Abstract][Full Text] [Related]
10. High arsenic groundwater in the Guide basin, northwestern China: Distribution and genesis mechanisms. Wang Z; Guo H; Xiu W; Wang J; Shen M Sci Total Environ; 2018 Nov; 640-641():194-206. PubMed ID: 29859436 [TBL] [Abstract][Full Text] [Related]
11. Sources and enrichment of phosphorus in groundwater of the Central Yangtze River Basin. Tao Y; Deng Y; Du Y; Xu Y; Leng Z; Ma T; Wang Y Sci Total Environ; 2020 Oct; 737():139837. PubMed ID: 32526585 [TBL] [Abstract][Full Text] [Related]
12. Groundwater quality in the alluvial aquifer system of northwest India: New evidence of the extent of anthropogenic and geogenic contamination. Lapworth DJ; Krishan G; MacDonald AM; Rao MS Sci Total Environ; 2017 Dec; 599-600():1433-1444. PubMed ID: 28531952 [TBL] [Abstract][Full Text] [Related]
13. Elevated arsenic and manganese in groundwaters of Murshidabad, West Bengal, India. Sankar MS; Vega MA; Defoe PP; Kibria MG; Ford S; Telfeyan K; Neal A; Mohajerin TJ; Hettiarachchi GM; Barua S; Hobson C; Johannesson K; Datta S Sci Total Environ; 2014 Aug; 488-489():570-9. PubMed ID: 24694939 [TBL] [Abstract][Full Text] [Related]
14. Shallow hydrostratigraphy in an arsenic affected region of Bengal Basin: implication for targeting safe aquifers for drinking water supply. Biswas A; Bhattacharya P; Mukherjee A; Nath B; Alexanderson H; Kundu AK; Chatterjee D; Jacks G Sci Total Environ; 2014 Jul; 485-486():12-22. PubMed ID: 24704952 [TBL] [Abstract][Full Text] [Related]
15. Arsenic mobilization in the aquifers of three physiographic settings of West Bengal, India: understanding geogenic and anthropogenic influences. Bhowmick S; Nath B; Halder D; Biswas A; Majumder S; Mondal P; Chakraborty S; Nriagu J; Bhattacharya P; Iglesias M; Roman-Ross G; Guha Mazumder D; Bundschuh J; Chatterjee D J Hazard Mater; 2013 Nov; 262():915-23. PubMed ID: 22999019 [TBL] [Abstract][Full Text] [Related]
16. Impact process of the aquitard to regional arsenic accumulation of the underlying aquifer in Central Yangtze River Basin. Xiao C; Ma T; Du Y; Liu Y; Liu R; Zhang D; Chen J Environ Geochem Health; 2021 Mar; 43(3):1091-1107. PubMed ID: 32839956 [TBL] [Abstract][Full Text] [Related]
17. Temporal evolution of depth-stratified groundwater salinity in municipal wells in the major aquifers in Texas, USA. Chaudhuri S; Ale S Sci Total Environ; 2014 Feb; 472():370-80. PubMed ID: 24295753 [TBL] [Abstract][Full Text] [Related]
18. Geochemical processes regulating F-, as and NO3- content in the groundwater of a sector of the Pampean Region, Argentina. Borzi GE; García L; Carol ES Sci Total Environ; 2015 Oct; 530-531():154-162. PubMed ID: 26026417 [TBL] [Abstract][Full Text] [Related]
19. High arsenic contamination and presence of other trace metals in drinking water of Kushtia district, Bangladesh. Huq ME; Fahad S; Shao Z; Sarven MS; Al-Huqail AA; Siddiqui MH; Habib Ur Rahman M; Khan IA; Alam M; Saeed M; Rauf A; Basir A; Jamal Y; Khan SU J Environ Manage; 2019 Jul; 242():199-209. PubMed ID: 31039529 [TBL] [Abstract][Full Text] [Related]
20. Genesis of arsenic-rich groundwater and the search for alternative safe aquifers in the Gangetic Plain, India. Saha D; Shukla RR Water Environ Res; 2013 Dec; 85(12):2254-64. PubMed ID: 24597041 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]