BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 30248841)

  • 1. Hydrogeochemical evidences for targeting sources of safe groundwater supply in arsenic-affected multi-level aquifer systems.
    Du Y; Deng Y; Ma T; Lu Z; Shen S; Gan Y; Wang Y
    Sci Total Environ; 2018 Dec; 645():1159-1171. PubMed ID: 30248841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geostatistical assessment of groundwater arsenic contamination in the Padana Plain.
    Schiavo M; Giambastiani BMS; Greggio N; Colombani N; Mastrocicco M
    Sci Total Environ; 2024 Jun; 931():172998. PubMed ID: 38714254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating trends in groundwater quality of coastal alluvial aquifers of Eastern India for sustainable groundwater management.
    Ghosh S; Jha MK
    Environ Sci Pollut Res Int; 2024 Jun; ():. PubMed ID: 38861064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the sustainability of deep groundwater as an arsenic-safe resource in the Bengal Basin.
    Michael HA; Voss CI
    Proc Natl Acad Sci U S A; 2008 Jun; 105(25):8531-6. PubMed ID: 18562284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anthropogenic processes drive spatiotemporal variability of sulfate in groundwater from a multi-aquifer system: Dilution caused by mine drainage.
    Wang C; Luo A; Qu S; Liang X; Xiao B; Mu W; Wang Y; Yu R
    J Contam Hydrol; 2024 May; 264():104358. PubMed ID: 38692144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of the effects of seasonally varying pumping on intraborehole flow and the vulnerability of public-supply wells to contamination.
    Yager RM; Heywood CE
    Ground Water; 2014 Sep; 52 Suppl 1(Suppl 1):40-52. PubMed ID: 24410487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geochemical insights of arsenic mobilization into the aquifers of Punjab, Pakistan.
    Sadiq M; Eqani SAMAS; Podgorski J; Ilyas S; Abbas SS; Shafqat MN; Nawaz I; Berg M
    Sci Total Environ; 2024 Jul; 935():173452. PubMed ID: 38782276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Widespread aquifer depressurization after a century of intensive groundwater use in USA.
    Hilton A; Jasechko S
    Sci Adv; 2023 Sep; 9(37):eadh2992. PubMed ID: 37703375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved technology for monitoring groundwater flow velocity and direction in fractured rock system based on colloidal particles motion.
    Hu F; Huang CS; Han JH; Huang W; Li X; Hou BQ; Akram W; Li L; Liu XH; Chen W; Zhao ZL; Zhan J; Xu LS; Shan H; Li XZ; Han WJ; Yin ZB; Wang ZZ; Xiao TF
    Sci Rep; 2024 Apr; 14(1):7685. PubMed ID: 38561405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of Groundwater Pumping for Hydraulic Fracturing on Aquifers Overlying the Eagle Ford Shale.
    Brien JA; Obkirchner GE; Knappett PSK; Miller GR; Burnett D; Bhatia M
    Ground Water; 2024; 62(3):343-356. PubMed ID: 37507835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Saline and hydrocarbon-bearing fluids detected in shallow aquifers of southern New Brunswick, Canada: Natural occurrence, or deep migration along faults and industrial wellbores?
    Bordeleau G; Lavoie D; Rivard C; Pinet N; Barton D; Hinds S; Al T
    Sci Total Environ; 2024 Jul; 933():172999. PubMed ID: 38714261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Groundwater contamination in Ibadan, South-West Nigeria.
    Egbinola CN; Amanambu AC
    Springerplus; 2014; 3():448. PubMed ID: 26034666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Terrestrial water load and groundwater fluctuation in the Bengal Basin.
    Burgess WG; Shamsudduha M; Taylor RG; Zahid A; Ahmed KM; Mukherjee A; Lapworth DJ; Bense VF
    Sci Rep; 2017 Jun; 7(1):3872. PubMed ID: 28634399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Recharging Wells, Sanitary Collectors and Rain Drainage on Increase Temperature in Pumping Wells on the Groundwater Heat Pump System.
    Strelec S; Grabar K; Jug J; Kranjčić N
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impacts of Groundwater Pumping on Subterranean Microbial Communities in a Deep Aquifer Associated with an Accretionary Prism.
    Iso S; Sato Y; Kimura H
    Microorganisms; 2024 Mar; 12(4):. PubMed ID: 38674625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Microbial Risk Assessment for Contaminated Private Wells in the Fractured Dolomite Aquifer of Kewaunee County, Wisconsin.
    Burch TR; Stokdyk JP; Spencer SK; Kieke BA; Firnstahl AD; Muldoon MA; Borchardt MA
    Environ Health Perspect; 2021 Jun; 129(6):67003. PubMed ID: 34160247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Space-temporal analysis of groundwater quality in three areas of the state of Yucatán, México, and its relationship with existing anthropogenic activity.
    Montes-Ávila I; Góngora-Echeverría VR; Giácoman-Vallejos G; Ponce-Caballero C
    Environ Sci Pollut Res Int; 2024 May; ():. PubMed ID: 38702485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustaining aquifers hydrologically, economically, and institutionally: Policy analysis of the Ogallala in New Mexico.
    Chilaka C; Rinehart AJ; Wang H; Ward FA
    Sci Total Environ; 2024 Apr; 921():170727. PubMed ID: 38350566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Successive bootstrapping deep learning approach and airborne EM-borehole data fusion to understand salt water in the Mississippi River Valley Alluvial Aquifer.
    Attia M; Tsai FT
    Sci Total Environ; 2024 Jul; 932():172950. PubMed ID: 38703842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictability of initial hydrogeochemical effects induced by short-term infiltration of ∼75 °C hot water into a shallow glaciogenic aquifer.
    Lüders K; Hornbruch G; Zarrabi N; Heldt S; Dahmke A; Köber R
    Water Res X; 2021 Dec; 13():100121. PubMed ID: 34647002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.