These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 30248865)
1. Odour impact from farms with animal husbandry and biogas facilities. Keck M; Mager K; Weber K; Keller M; Frei M; Steiner B; Schrade S Sci Total Environ; 2018 Dec; 645():1432-1443. PubMed ID: 30248865 [TBL] [Abstract][Full Text] [Related]
2. Comparison of odour emissions from animal housing systems with low ammonia emission. Ogink NW; Koerkamp PW Water Sci Technol; 2001; 44(9):245-52. PubMed ID: 11762469 [TBL] [Abstract][Full Text] [Related]
3. Comparative study of heavy metal and pathogenic bacterial contamination in sludge and manure in biogas and non-biogas swine farms. Tulayakul P; Boonsoongnern A; Kasemsuwan S; Wiriyarampa S; Pankumnoed J; Tippayaluck S; Hananantachai H; Mingkhwan R; Netvichian R; Khaodhiar S J Environ Sci (China); 2011; 23(6):991-7. PubMed ID: 22066222 [TBL] [Abstract][Full Text] [Related]
4. Use of electronic noses for detection of odour from animal production facilities: a review. Nimmermark S Water Sci Technol; 2001; 44(9):33-41. PubMed ID: 11762481 [TBL] [Abstract][Full Text] [Related]
5. Ammonia and odour emissions from UK pig farms and nitrogen leaching from outdoor pig production. A review. Webb J; Broomfield M; Jones S; Donovan B Sci Total Environ; 2014 Feb; 470-471():865-75. PubMed ID: 24211346 [TBL] [Abstract][Full Text] [Related]
6. A new intelligent electronic nose system for measuring and analysing livestock and poultry farm odours. Pan L; Yang SX Environ Monit Assess; 2007 Dec; 135(1-3):399-408. PubMed ID: 17385056 [TBL] [Abstract][Full Text] [Related]
7. The effect of two ammonia-emission-reducing pig housing systems on odour emission. Mol G; Ogink NW Water Sci Technol; 2004; 50(4):335-40. PubMed ID: 15484778 [TBL] [Abstract][Full Text] [Related]
8. From the application of antibiotics to antibiotic residues in liquid manures and digestates: A screening study in one European center of conventional pig husbandry. Widyasari-Mehta A; Hartung S; Kreuzig R J Environ Manage; 2016 Jul; 177():129-37. PubMed ID: 27088209 [TBL] [Abstract][Full Text] [Related]
9. Consequential environmental life cycle assessment of a farm-scale biogas plant. Van Stappen F; Mathot M; Decruyenaere V; Loriers A; Delcour A; Planchon V; Goffart JP; Stilmant D J Environ Manage; 2016 Jun; 175():20-32. PubMed ID: 27017269 [TBL] [Abstract][Full Text] [Related]
10. Dispersion modeling of odour, gases, and respirable dust using AERMOD for poultry and dairy barns in the Canadian Prairies. Huang D; Guo H Sci Total Environ; 2019 Nov; 690():620-628. PubMed ID: 31301502 [TBL] [Abstract][Full Text] [Related]
11. Prevention and control of losses of gaseous nitrogen compounds in livestock operations: a review. Jongebreur AA; Monteny GJ ScientificWorldJournal; 2001 Nov; 1 Suppl 2():844-51. PubMed ID: 12805834 [TBL] [Abstract][Full Text] [Related]
12. The impact of livestock farming activity on the quality of surface water. Cesoniene L; Dapkiene M; Sileikiene D Environ Sci Pollut Res Int; 2019 Nov; 26(32):32678-32686. PubMed ID: 30467746 [TBL] [Abstract][Full Text] [Related]
13. Influence of solid-liquid separation strategy on biogas yield from a stratified swine production system. Cestonaro do Amaral A; Kunz A; Radis Steinmetz RL; Scussiato LA; Tápparo DC; Gaspareto TC J Environ Manage; 2016 Mar; 168():229-35. PubMed ID: 26716354 [TBL] [Abstract][Full Text] [Related]
14. Odour annoyance in the neighbourhood of livestock farming - perceived health and health care seeking behaviour. Hooiveld M; van Dijk C; van der Sman-de Beer F; Smit LA; Vogelaar M; Wouters IM; Heederik DJ; Yzermans CJ Ann Agric Environ Med; 2015; 22(1):55-61. PubMed ID: 25780829 [TBL] [Abstract][Full Text] [Related]
15. A field study on downwind odor transport from swine facilities. Zhu J; Li X J Environ Sci Health B; 2000 Mar; 35(2):245-58. PubMed ID: 10736772 [TBL] [Abstract][Full Text] [Related]
16. A dispersion modelling approach to determine the odour impact of intensive poultry production units in Ireland. Hayes ET; Curran TP; Dodd VA Bioresour Technol; 2006 Oct; 97(15):1773-9. PubMed ID: 16263273 [TBL] [Abstract][Full Text] [Related]
17. Reduction of odours in pilot-scale landfill biocovers. Capanema MA; Cabana H; Cabral AR Waste Manag; 2014 Apr; 34(4):770-9. PubMed ID: 24556264 [TBL] [Abstract][Full Text] [Related]
18. Agricultural odours: 25 years of reducing complaints about barns and manure storages using the minimum distance separation formulae. Fraser HW Water Sci Technol; 2001; 44(9):211-7. PubMed ID: 11762464 [TBL] [Abstract][Full Text] [Related]
19. Do odour impact criteria of different jurisdictions ensure analogous separation distances for an equivalent level of protection? Brancher M; Piringer M; Grauer AF; Schauberger G J Environ Manage; 2019 Jun; 240():394-403. PubMed ID: 30954662 [TBL] [Abstract][Full Text] [Related]
20. Comparison of different approaches for odour impact assessment: dispersion modelling (CALPUFF) vs field inspection (CEN/TC 264). Dentoni L; Capelli L; Sironi S; Guillot JM; Rossi AN Water Sci Technol; 2013; 68(8):1731-8. PubMed ID: 24185053 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]