BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30248865)

  • 1. Odour impact from farms with animal husbandry and biogas facilities.
    Keck M; Mager K; Weber K; Keller M; Frei M; Steiner B; Schrade S
    Sci Total Environ; 2018 Dec; 645():1432-1443. PubMed ID: 30248865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of odour emissions from animal housing systems with low ammonia emission.
    Ogink NW; Koerkamp PW
    Water Sci Technol; 2001; 44(9):245-52. PubMed ID: 11762469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of heavy metal and pathogenic bacterial contamination in sludge and manure in biogas and non-biogas swine farms.
    Tulayakul P; Boonsoongnern A; Kasemsuwan S; Wiriyarampa S; Pankumnoed J; Tippayaluck S; Hananantachai H; Mingkhwan R; Netvichian R; Khaodhiar S
    J Environ Sci (China); 2011; 23(6):991-7. PubMed ID: 22066222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of electronic noses for detection of odour from animal production facilities: a review.
    Nimmermark S
    Water Sci Technol; 2001; 44(9):33-41. PubMed ID: 11762481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ammonia and odour emissions from UK pig farms and nitrogen leaching from outdoor pig production. A review.
    Webb J; Broomfield M; Jones S; Donovan B
    Sci Total Environ; 2014 Feb; 470-471():865-75. PubMed ID: 24211346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new intelligent electronic nose system for measuring and analysing livestock and poultry farm odours.
    Pan L; Yang SX
    Environ Monit Assess; 2007 Dec; 135(1-3):399-408. PubMed ID: 17385056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of two ammonia-emission-reducing pig housing systems on odour emission.
    Mol G; Ogink NW
    Water Sci Technol; 2004; 50(4):335-40. PubMed ID: 15484778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From the application of antibiotics to antibiotic residues in liquid manures and digestates: A screening study in one European center of conventional pig husbandry.
    Widyasari-Mehta A; Hartung S; Kreuzig R
    J Environ Manage; 2016 Jul; 177():129-37. PubMed ID: 27088209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consequential environmental life cycle assessment of a farm-scale biogas plant.
    Van Stappen F; Mathot M; Decruyenaere V; Loriers A; Delcour A; Planchon V; Goffart JP; Stilmant D
    J Environ Manage; 2016 Jun; 175():20-32. PubMed ID: 27017269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersion modeling of odour, gases, and respirable dust using AERMOD for poultry and dairy barns in the Canadian Prairies.
    Huang D; Guo H
    Sci Total Environ; 2019 Nov; 690():620-628. PubMed ID: 31301502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prevention and control of losses of gaseous nitrogen compounds in livestock operations: a review.
    Jongebreur AA; Monteny GJ
    ScientificWorldJournal; 2001 Nov; 1 Suppl 2():844-51. PubMed ID: 12805834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of livestock farming activity on the quality of surface water.
    Cesoniene L; Dapkiene M; Sileikiene D
    Environ Sci Pollut Res Int; 2019 Nov; 26(32):32678-32686. PubMed ID: 30467746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of solid-liquid separation strategy on biogas yield from a stratified swine production system.
    Cestonaro do Amaral A; Kunz A; Radis Steinmetz RL; Scussiato LA; Tápparo DC; Gaspareto TC
    J Environ Manage; 2016 Mar; 168():229-35. PubMed ID: 26716354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Odour annoyance in the neighbourhood of livestock farming - perceived health and health care seeking behaviour.
    Hooiveld M; van Dijk C; van der Sman-de Beer F; Smit LA; Vogelaar M; Wouters IM; Heederik DJ; Yzermans CJ
    Ann Agric Environ Med; 2015; 22(1):55-61. PubMed ID: 25780829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A field study on downwind odor transport from swine facilities.
    Zhu J; Li X
    J Environ Sci Health B; 2000 Mar; 35(2):245-58. PubMed ID: 10736772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dispersion modelling approach to determine the odour impact of intensive poultry production units in Ireland.
    Hayes ET; Curran TP; Dodd VA
    Bioresour Technol; 2006 Oct; 97(15):1773-9. PubMed ID: 16263273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of odours in pilot-scale landfill biocovers.
    Capanema MA; Cabana H; Cabral AR
    Waste Manag; 2014 Apr; 34(4):770-9. PubMed ID: 24556264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agricultural odours: 25 years of reducing complaints about barns and manure storages using the minimum distance separation formulae.
    Fraser HW
    Water Sci Technol; 2001; 44(9):211-7. PubMed ID: 11762464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do odour impact criteria of different jurisdictions ensure analogous separation distances for an equivalent level of protection?
    Brancher M; Piringer M; Grauer AF; Schauberger G
    J Environ Manage; 2019 Jun; 240():394-403. PubMed ID: 30954662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of different approaches for odour impact assessment: dispersion modelling (CALPUFF) vs field inspection (CEN/TC 264).
    Dentoni L; Capelli L; Sironi S; Guillot JM; Rossi AN
    Water Sci Technol; 2013; 68(8):1731-8. PubMed ID: 24185053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.