These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 30249101)
1. Identification of critical microRNAs in gastrointestinal stromal tumor patients treated with Imatinib. Zhang Z; Jiang NY; Guan RY; Zhu YK; Jiang FQ; Piao D Neoplasma; 2018 Sep; 65(5):683-692. PubMed ID: 30249101 [TBL] [Abstract][Full Text] [Related]
2. miR-125a-5p regulation increases phosphorylation of FAK that contributes to imatinib resistance in gastrointestinal stromal tumors. Huang WK; Akçakaya P; Gangaev A; Lee L; Zeljic K; Hajeri P; Berglund E; Ghaderi M; Åhlén J; Bränström R; Larsson C; Lui WO Exp Cell Res; 2018 Oct; 371(1):287-296. PubMed ID: 30149002 [TBL] [Abstract][Full Text] [Related]
3. PIK3C2A is a gene-specific target of microRNA-518a-5p in imatinib mesylate-resistant gastrointestinal stromal tumor. Shi Y; Gao X; Hu Q; Li X; Xu J; Lu S; Liu Y; Xu C; Jiang D; Lin J; Xue A; Tan Y; Shen K; Hou Y Lab Invest; 2016 Jun; 96(6):652-60. PubMed ID: 26950487 [TBL] [Abstract][Full Text] [Related]
4. microRNA expression signatures of gastrointestinal stromal tumours: associations with imatinib resistance and patient outcome. Akçakaya P; Caramuta S; Åhlen J; Ghaderi M; Berglund E; Östman A; Bränström R; Larsson C; Lui WO Br J Cancer; 2014 Nov; 111(11):2091-102. PubMed ID: 25349971 [TBL] [Abstract][Full Text] [Related]
5. Serum miR-518e-5p is a potential biomarker for secondary imatinib-resistant gastrointestinal stromal tumor. Kou Y; Yang R; Wang Q J Biosci; 2018 Dec; 43(5):1015-1023. PubMed ID: 30541960 [TBL] [Abstract][Full Text] [Related]
6. Identification of key microRNAs associated with diffuse large B-cell lymphoma by analyzing serum microRNA expressions. Meng Y; Quan L; Liu A Gene; 2018 Feb; 642():205-211. PubMed ID: 29128636 [TBL] [Abstract][Full Text] [Related]
7. MicroRNA network analysis identifies key microRNAs and genes associated with precancerous lesions of gastric cancer. Wang XW; Wu Y; Wang D; Qin ZF Genet Mol Res; 2014 Oct; 13(4):8695-703. PubMed ID: 25366760 [TBL] [Abstract][Full Text] [Related]
8. MicroRNA-409-5p Inhibits GIST Tumorigenesis and Improves Imatinib Resistance by Targeting KDM4D Expression. Qiu C; Feng YD; Yang X Curr Med Sci; 2023 Oct; 43(5):935-946. PubMed ID: 37828372 [TBL] [Abstract][Full Text] [Related]
9. Both Peripheral Blood and Urinary miR-195-5p, miR-192-3p, miR-328-5p and Their Target Genes PPM1A, RAB1A and BRSK1 May Be Potential Biomarkers for Membranous Nephropathy. Zhou G; Zhang X; Wang W; Zhang W; Wang H; Xin G Med Sci Monit; 2019 Mar; 25():1903-1916. PubMed ID: 30865617 [TBL] [Abstract][Full Text] [Related]
11. microRNA-218 increase the sensitivity of gastrointestinal stromal tumor to imatinib through PI3K/AKT pathway. Fan R; Zhong J; Zheng S; Wang Z; Xu Y; Li S; Zhou J; Yuan F Clin Exp Med; 2015 May; 15(2):137-44. PubMed ID: 24706111 [TBL] [Abstract][Full Text] [Related]
12. LncRNA-HOTAIR activates autophagy and promotes the imatinib resistance of gastrointestinal stromal tumor cells through a mechanism involving the miR-130a/ATG2B pathway. Zhang J; Chen K; Tang Y; Luan X; Zheng X; Lu X; Mao J; Hu L; Zhang S; Zhang X; Chen W Cell Death Dis; 2021 Apr; 12(4):367. PubMed ID: 33824300 [TBL] [Abstract][Full Text] [Related]
13. MicroRNA profiling reveals dysregulated microRNAs and their target gene regulatory networks in cemento-ossifying fibroma. Pereira TDSF; Brito JAR; Guimarães ALS; Gomes CC; de Lacerda JCT; de Castro WH; Coimbra RS; Diniz MG; Gomez RS J Oral Pathol Med; 2018 Jan; 47(1):78-85. PubMed ID: 29032608 [TBL] [Abstract][Full Text] [Related]
14. Imatinib Regulates Huang WK; Shi H; Akçakaya P; Zeljic K; Gangaev A; Caramuta S; Yeh CN; Bränström R; Larsson C; Lui WO Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638938 [TBL] [Abstract][Full Text] [Related]
15. miRNA-21 sensitizes gastrointestinal stromal tumors (GISTs) cells to Imatinib via targeting B-cell lymphoma 2 (Bcl-2). Cao CL; Niu HJ; Kang SP; Cong CL; Kang SR Eur Rev Med Pharmacol Sci; 2016 Sep; 20(17):3574-81. PubMed ID: 27649657 [TBL] [Abstract][Full Text] [Related]
16. Integrated analysis of microRNA and gene expression profiles reveals a functional regulatory module associated with liver fibrosis. Chen W; Zhao W; Yang A; Xu A; Wang H; Cong M; Liu T; Wang P; You H Gene; 2017 Dec; 636():87-95. PubMed ID: 28919164 [TBL] [Abstract][Full Text] [Related]
17. Identification and interaction analysis of key genes and microRNAs in hepatocellular carcinoma by bioinformatics analysis. Mou T; Zhu D; Wei X; Li T; Zheng D; Pu J; Guo Z; Wu Z World J Surg Oncol; 2017 Mar; 15(1):63. PubMed ID: 28302149 [TBL] [Abstract][Full Text] [Related]
18. Identification of miRNA/mRNA-Negative Regulation Pairs in Nasopharyngeal Carcinoma. Liu M; Zhu K; Qian X; Li W Med Sci Monit; 2016 Jun; 22():2215-34. PubMed ID: 27350400 [TBL] [Abstract][Full Text] [Related]
19. Expression profile of microRNAs in gastrointestinal stromal tumors revealed by high throughput quantitative RT-PCR microarray. Tong HX; Zhou YH; Hou YY; Zhang Y; Huang Y; Xie B; Wang JY; Jiang Q; He JY; Shao YB; Han WM; Tan RY; Zhu J; Lu WQ World J Gastroenterol; 2015 May; 21(19):5843-55. PubMed ID: 26019448 [TBL] [Abstract][Full Text] [Related]
20. Identification and interaction analysis of key miRNAs in medullary thyroid carcinoma by bioinformatics analysis. Zhang L; Lu D; Liu M; Zhang M; Peng Q Mol Med Rep; 2019 Sep; 20(3):2316-2324. PubMed ID: 31322209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]