These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 30249149)
1. Response of mouse bone marrow mesenchymal stem cells to graphene-containing grid-like bioactive glass scaffolds produced by robocasting. Deliormanlı AM; Türk M; Atmaca H J Biomater Appl; 2018 Oct; 33(4):488-500. PubMed ID: 30249149 [TBL] [Abstract][Full Text] [Related]
2. Direct Write Assembly of Graphene/Poly(ε-Caprolactone) Composite Scaffolds and Evaluation of Their Biological Performance Using Mouse Bone Marrow Mesenchymal Stem Cells. Deliormanlı AM Appl Biochem Biotechnol; 2019 Aug; 188(4):1117-1133. PubMed ID: 30809787 [TBL] [Abstract][Full Text] [Related]
3. Silicate-doped nano-hydroxyapatite/graphene oxide composite reinforced fibrous scaffolds for bone tissue engineering. Dalgic AD; Alshemary AZ; Tezcaner A; Keskin D; Evis Z J Biomater Appl; 2018 May; 32(10):1392-1405. PubMed ID: 29544381 [TBL] [Abstract][Full Text] [Related]
4. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo. Dasgupta S; Maji K; Nandi SK Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758 [TBL] [Abstract][Full Text] [Related]
5. Electrically conductive borate-based bioactive glass scaffolds for bone tissue engineering applications. Turk M; Deliormanlı AM J Biomater Appl; 2017 Jul; 32(1):28-39. PubMed ID: 28541125 [TBL] [Abstract][Full Text] [Related]
6. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds. Wang T; Yang X; Qi X; Jiang C J Transl Med; 2015 May; 13():152. PubMed ID: 25952675 [TBL] [Abstract][Full Text] [Related]
7. Robotic deposition and in vitro characterization of 3D gelatin-bioactive glass hybrid scaffolds for biomedical applications. Gao C; Rahaman MN; Gao Q; Teramoto A; Abe K J Biomed Mater Res A; 2013 Jul; 101(7):2027-37. PubMed ID: 23255226 [TBL] [Abstract][Full Text] [Related]
8. Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications. Dittler ML; Unalan I; Grünewald A; Beltrán AM; Grillo CA; Destch R; Gonzalez MC; Boccaccini AR Colloids Surf B Biointerfaces; 2019 Oct; 182():110346. PubMed ID: 31325780 [TBL] [Abstract][Full Text] [Related]
9. Bioactive calcium silicate/poly-ε-caprolactone composite scaffolds 3D printed under mild conditions for bone tissue engineering. Lin YH; Chiu YC; Shen YF; Wu YA; Shie MY J Mater Sci Mater Med; 2017 Dec; 29(1):11. PubMed ID: 29282550 [TBL] [Abstract][Full Text] [Related]
10. Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering. Fiorilli S; Baino F; Cauda V; Crepaldi M; Vitale-Brovarone C; Demarchi D; Onida B J Mater Sci Mater Med; 2015 Jan; 26(1):5346. PubMed ID: 25578700 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional zinc incorporated borosilicate bioactive glass scaffolds for rodent critical-sized calvarial defects repair and regeneration. Wang H; Zhao S; Xiao W; Cui X; Huang W; Rahaman MN; Zhang C; Wang D Colloids Surf B Biointerfaces; 2015 Jun; 130():149-56. PubMed ID: 25912027 [TBL] [Abstract][Full Text] [Related]
12. Effect of nanoscale bioactive glass with radial spherical particles on osteogenic differentiation of rat bone marrow mesenchymal stem cells. Wang L; Yan J; Hu X; Zhu X; Hu S; Qian J; Zhang F; Liu M J Mater Sci Mater Med; 2020 Mar; 31(3):29. PubMed ID: 32140885 [TBL] [Abstract][Full Text] [Related]
13. Dissolution, bioactivity and osteogenic properties of composites based on polymer and silicate or borosilicate bioactive glass. Houaoui A; Lyyra I; Agniel R; Pauthe E; Massera J; Boissière M Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110340. PubMed ID: 31761244 [TBL] [Abstract][Full Text] [Related]
14. The synergistic effects of graphene-contained 3D-printed calcium silicate/poly-ε-caprolactone scaffolds promote FGFR-induced osteogenic/angiogenic differentiation of mesenchymal stem cells. Lin YH; Chuang TY; Chiang WH; Chen IP; Wang K; Shie MY; Chen YW Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109887. PubMed ID: 31500024 [TBL] [Abstract][Full Text] [Related]
15. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. Fu Q; Rahaman MN; Fu H; Liu X J Biomed Mater Res A; 2010 Oct; 95(1):164-71. PubMed ID: 20544804 [TBL] [Abstract][Full Text] [Related]
16. Robocasting of Bioactive SiO Baino F; Barberi J; Fiume E; Orlygsson G; Massera J; Verné E J Healthc Eng; 2019; 2019():5153136. PubMed ID: 31098008 [TBL] [Abstract][Full Text] [Related]
17. Hydroxyapatite formation on sol-gel derived poly(ε-caprolactone)/bioactive glass hybrid biomaterials. Allo BA; Rizkalla AS; Mequanint K ACS Appl Mater Interfaces; 2012 Jun; 4(6):3148-56. PubMed ID: 22625179 [TBL] [Abstract][Full Text] [Related]
18. Effect of bioactive glass particles on osteogenic differentiation of adipose-derived mesenchymal stem cells seeded on lactide and caprolactone based scaffolds. Larrañaga A; Alonso-Varona A; Palomares T; Rubio-Azpeitia E; Aldazabal P; Martin FJ; Sarasua JR J Biomed Mater Res A; 2015 Dec; 103(12):3815-24. PubMed ID: 26074489 [TBL] [Abstract][Full Text] [Related]
19. A new composite scaffold of bioactive glass nanoparticles/graphene: Synchronous improvements of cytocompatibility and mechanical property. Fan Z; Wang J; Liu F; Nie Y; Ren L; Liu B Colloids Surf B Biointerfaces; 2016 Sep; 145():438-446. PubMed ID: 27232307 [TBL] [Abstract][Full Text] [Related]
20. Copper-doped borosilicate bioactive glass scaffolds with improved angiogenic and osteogenic capacity for repairing osseous defects. Zhao S; Wang H; Zhang Y; Huang W; Rahaman MN; Liu Z; Wang D; Zhang C Acta Biomater; 2015 Mar; 14():185-96. PubMed ID: 25534470 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]