These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 30249402)

  • 21. Effects of solution crowding on actin polymerization reveal the energetic basis for nucleotide-dependent filament stability.
    Frederick KB; Sept D; De La Cruz EM
    J Mol Biol; 2008 May; 378(3):540-50. PubMed ID: 18374941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The end of a polymerizing actin filament contains numerous ATP-subunit segments that are disconnected by ADP-subunits resulting from ATP hydrolysis.
    Pieper U; Wegner A
    Biochemistry; 1996 Apr; 35(14):4396-402. PubMed ID: 8605188
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments.
    Pollard TD
    J Cell Biol; 1986 Dec; 103(6 Pt 2):2747-54. PubMed ID: 3793756
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Individual actin filaments in a microfluidic flow reveal the mechanism of ATP hydrolysis and give insight into the properties of profilin.
    Jégou A; Niedermayer T; Orbán J; Didry D; Lipowsky R; Carlier MF; Romet-Lemonne G
    PLoS Biol; 2011 Sep; 9(9):e1001161. PubMed ID: 21980262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular mechanisms of inorganic-phosphate release from the core and barbed end of actin filaments.
    Oosterheert W; Blanc FEC; Roy A; Belyy A; Sanders MB; Hofnagel O; Hummer G; Bieling P; Raunser S
    Nat Struct Mol Biol; 2023 Nov; 30(11):1774-1785. PubMed ID: 37749275
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural basis for the destabilization of F-actin by phosphate release following ATP hydrolysis.
    Orlova A; Egelman EH
    J Mol Biol; 1992 Oct; 227(4):1043-53. PubMed ID: 1433285
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nucleotide regulation of the structure and dynamics of G-actin.
    Saunders MG; Tempkin J; Weare J; Dinner AR; Roux B; Voth GA
    Biophys J; 2014 Apr; 106(8):1710-20. PubMed ID: 24739170
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural basis of actin filament assembly and aging.
    Oosterheert W; Klink BU; Belyy A; Pospich S; Raunser S
    Nature; 2022 Nov; 611(7935):374-379. PubMed ID: 36289337
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of toxins on inorganic phosphate release during actin polymerization.
    Vig A; Ohmacht R; Jámbor E; Bugyi B; Nyitrai M; Hild G
    Eur Biophys J; 2011 May; 40(5):619-26. PubMed ID: 21203885
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic evidence for a readily exchangeable nucleotide at the terminal subunit of the barbed ends of actin filaments.
    Teubner A; Wegner A
    Biochemistry; 1998 May; 37(20):7532-8. PubMed ID: 9585568
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of ATP-hydrolysis in the dynamics of a single actin filament.
    Ranjith P; Mallick K; Joanny JF; Lacoste D
    Biophys J; 2010 Apr; 98(8):1418-27. PubMed ID: 20409460
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ATP hydrolysis by the gelsolin-actin complex and at the pointed ends of gelsolin-capped filaments.
    Coué M; Korn ED
    J Biol Chem; 1986 Feb; 261(4):1588-93. PubMed ID: 3003075
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stochastic severing of actin filaments by actin depolymerizing factor/cofilin controls the emergence of a steady dynamical regime.
    Roland J; Berro J; Michelot A; Blanchoin L; Martiel JL
    Biophys J; 2008 Mar; 94(6):2082-94. PubMed ID: 18065447
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Allostery of actin filaments: molecular dynamics simulations and coarse-grained analysis.
    Chu JW; Voth GA
    Proc Natl Acad Sci U S A; 2005 Sep; 102(37):13111-6. PubMed ID: 16135566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Binding of phosphate to F-ADP-actin and role of F-ADP-Pi-actin in ATP-actin polymerization.
    Carlier MF; Pantaloni D
    J Biol Chem; 1988 Jan; 263(2):817-25. PubMed ID: 3335528
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stabilization of actin filaments by ATP and inorganic phosphate.
    Dancker P; Fischer S
    Z Naturforsch C J Biosci; 1989; 44(7-8):698-704. PubMed ID: 2775410
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing the mechanism of ATP hydrolysis on F-actin using vanadate and the structural analogs of phosphate BeF-3 and A1F-4.
    Combeau C; Carlier MF
    J Biol Chem; 1988 Nov; 263(33):17429-36. PubMed ID: 3182855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The interaction between ATP-actin and ADP-actin. A tentative model for actin polymerization.
    Pantaloni D; Carlier MF; Korn ED
    J Biol Chem; 1985 Jun; 260(11):6572-8. PubMed ID: 3997837
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Model of reduction of actin polymerization forces by ATP hydrolysis.
    Carlsson AE
    Phys Biol; 2008 Jul; 5(3):036002. PubMed ID: 18626129
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical differences between ATP and ADP actin states: A molecular dynamics study.
    Mehrafrooz B; Shamloo A
    J Theor Biol; 2018 Jul; 448():94-103. PubMed ID: 29634959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.