These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Effect of ATP removal and inorganic phosphate on length redistribution of sheared actin filament populations. Evidence for a mechanism of end-to-end annealing. Rickard JE; Sheterline P J Mol Biol; 1988 Jun; 201(4):675-81. PubMed ID: 3172199 [TBL] [Abstract][Full Text] [Related]
43. Mechanism of the insertion of actin monomers between the barbed ends of actin filaments and barbed end-bound insertin. Gaertner A; Wegner A J Muscle Res Cell Motil; 1991 Feb; 12(1):27-36. PubMed ID: 2050808 [TBL] [Abstract][Full Text] [Related]
45. Impact of profilin on actin-bound nucleotide exchange and actin polymerization dynamics. Selden LA; Kinosian HJ; Estes JE; Gershman LC Biochemistry; 1999 Mar; 38(9):2769-78. PubMed ID: 10052948 [TBL] [Abstract][Full Text] [Related]
46. Actin polymerization kinetics, cap structure, and fluctuations. Vavylonis D; Yang Q; O'Shaughnessy B Proc Natl Acad Sci U S A; 2005 Jun; 102(24):8543-8. PubMed ID: 15939882 [TBL] [Abstract][Full Text] [Related]
47. A theoretical analysis of filament length fluctuations in actin and other polymers. Hu J; Othmer HG J Math Biol; 2011 Dec; 63(6):1001-49. PubMed ID: 21234568 [TBL] [Abstract][Full Text] [Related]
48. Unraveling the mystery of ATP hydrolysis in actin filaments. McCullagh M; Saunders MG; Voth GA J Am Chem Soc; 2014 Sep; 136(37):13053-8. PubMed ID: 25181471 [TBL] [Abstract][Full Text] [Related]
49. Bound nucleotide can control the dynamic architecture of monomeric actin. Ali R; Zahm JA; Rosen MK Nat Struct Mol Biol; 2022 Apr; 29(4):320-328. PubMed ID: 35332323 [TBL] [Abstract][Full Text] [Related]
52. Evidence for an ATP cap at the ends of actin filaments and its regulation of the F-actin steady state. Carlier MF; Pantaloni D; Korn ED J Biol Chem; 1984 Aug; 259(16):9983-6. PubMed ID: 6236218 [TBL] [Abstract][Full Text] [Related]
53. Differential dynamic behavior of actin filaments containing tightly-bound Ca2+ or Mg2+ in the presence of myosin heads actively hydrolyzing ATP. Rebello CA; Ludescher RD Biochemistry; 1999 Oct; 38(40):13288-95. PubMed ID: 10529203 [TBL] [Abstract][Full Text] [Related]
54. Mechanism of regulation of phosphate dissociation from actomyosin-ADP-Pi by thin filament proteins. Heeley DH; Belknap B; White HD Proc Natl Acad Sci U S A; 2002 Dec; 99(26):16731-6. PubMed ID: 12486217 [TBL] [Abstract][Full Text] [Related]
55. Filament organization of the bacterial actin MreB is dependent on the nucleotide state. Pande V; Mitra N; Bagde SR; Srinivasan R; Gayathri P J Cell Biol; 2022 May; 221(5):. PubMed ID: 35377392 [TBL] [Abstract][Full Text] [Related]
57. Kinetics of nucleoside triphosphate cleavage and phosphate release steps by associated rabbit skeletal actomyosin, measured using a novel fluorescent probe for phosphate. White HD; Belknap B; Webb MR Biochemistry; 1997 Sep; 36(39):11828-36. PubMed ID: 9305974 [TBL] [Abstract][Full Text] [Related]
58. Effects of Nucleotide and End-Dependent Actin Conformations on Polymerization. Jepsen L; Sept D Biophys J; 2020 Nov; 119(9):1800-1810. PubMed ID: 33080221 [TBL] [Abstract][Full Text] [Related]
59. Polymerization of ADP-actin and ATP-actin under sonication and characteristics of the ATP-actin equilibrium polymer. Carlier MF; Pantaloni D; Korn ED J Biol Chem; 1985 Jun; 260(11):6565-71. PubMed ID: 3997836 [TBL] [Abstract][Full Text] [Related]
60. Nucleotide effects on the structure and dynamics of actin. Zheng X; Diraviyam K; Sept D Biophys J; 2007 Aug; 93(4):1277-83. PubMed ID: 17526584 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]