BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 30249595)

  • 1. USP14 inhibition corrects an
    Chakraborty J; von Stockum S; Marchesan E; Caicci F; Ferrari V; Rakovic A; Klein C; Antonini A; Bubacco L; Ziviani E
    EMBO Mol Med; 2018 Nov; 10(11):. PubMed ID: 30249595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial protein import regulates cytosolic protein homeostasis and neuronal integrity.
    Liu W; Duan X; Fang X; Shang W; Tong C
    Autophagy; 2018; 14(8):1293-1309. PubMed ID: 29909722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deciphering the Molecular Signals of PINK1/Parkin Mitophagy.
    Nguyen TN; Padman BS; Lazarou M
    Trends Cell Biol; 2016 Oct; 26(10):733-744. PubMed ID: 27291334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PINK1-induced mitophagy promotes neuroprotection in Huntington's disease.
    Khalil B; El Fissi N; Aouane A; Cabirol-Pol MJ; Rival T; LiƩvens JC
    Cell Death Dis; 2015 Jan; 6(1):e1617. PubMed ID: 25611391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of USP14 Perturbs Ubiquitin Homeostasis and Delays the Cell Cycle in Mouse Embryonic Fibroblasts and in Fruit Fly Drosophila.
    Lee JH; Park S; Yun Y; Choi WH; Kang MJ; Lee MJ
    Cell Physiol Biochem; 2018; 47(1):67-82. PubMed ID: 29763934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compartmentalized Regulation of Parkin-Mediated Mitochondrial Quality Control in the Drosophila Nervous System In Vivo.
    Sung H; Tandarich LC; Nguyen K; Hollenbeck PJ
    J Neurosci; 2016 Jul; 36(28):7375-91. PubMed ID: 27413149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nix restores mitophagy and mitochondrial function to protect against PINK1/Parkin-related Parkinson's disease.
    Koentjoro B; Park JS; Sue CM
    Sci Rep; 2017 Mar; 7():44373. PubMed ID: 28281653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation.
    Gelmetti V; De Rosa P; Torosantucci L; Marini ES; Romagnoli A; Di Rienzo M; Arena G; Vignone D; Fimia GM; Valente EM
    Autophagy; 2017 Apr; 13(4):654-669. PubMed ID: 28368777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual Function of USP14 Deubiquitinase in Cellular Proteasomal Activity and Autophagic Flux.
    Kim E; Park S; Lee JH; Mun JY; Choi WH; Yun Y; Lee J; Kim JH; Kang MJ; Lee MJ
    Cell Rep; 2018 Jul; 24(3):732-743. PubMed ID: 30021169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autophagy machinery in the context of mammalian mitophagy.
    Yoshii SR; Mizushima N
    Biochim Biophys Acta; 2015 Oct; 1853(10 Pt B):2797-801. PubMed ID: 25634658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond.
    Bingol B; Sheng M
    Free Radic Biol Med; 2016 Nov; 100():210-222. PubMed ID: 27094585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PGAM5 regulates PINK1/Parkin-mediated mitophagy via DRP1 in CCCP-induced mitochondrial dysfunction.
    Park YS; Choi SE; Koh HC
    Toxicol Lett; 2018 Mar; 284():120-128. PubMed ID: 29241732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor.
    Wei Y; Chiang WC; Sumpter R; Mishra P; Levine B
    Cell; 2017 Jan; 168(1-2):224-238.e10. PubMed ID: 28017329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phospho-ubiquitin-PARK2 complex as a marker for mitophagy defects.
    Callegari S; Oeljeklaus S; Warscheid B; Dennerlein S; Thumm M; Rehling P; Dudek J
    Autophagy; 2017 Jan; 13(1):201-211. PubMed ID: 27846363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inner mitochondrial membrane protein Prohibitin 1 mediates Nix-induced, Parkin-independent mitophagy.
    Alula KM; Delgado-Deida Y; Callahan R; Till A; Underwood L; Thompson WE; Souza RF; Dassopoulos T; Onyiah J; Venuprasad K; Theiss AL
    Sci Rep; 2023 Jan; 13(1):18. PubMed ID: 36593241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane.
    Yoshii SR; Kishi C; Ishihara N; Mizushima N
    J Biol Chem; 2011 Jun; 286(22):19630-40. PubMed ID: 21454557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cleaved PGAM5 is released from mitochondria depending on proteasome-mediated rupture of the outer mitochondrial membrane during mitophagy.
    Yamaguchi A; Ishikawa H; Furuoka M; Yokozeki M; Matsuda N; Tanimura S; Takeda K
    J Biochem; 2019 Jan; 165(1):19-25. PubMed ID: 30247576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Doxorubicin-induced mitophagy and mitochondrial damage is associated with dysregulation of the PINK1/parkin pathway.
    Yin J; Guo J; Zhang Q; Cui L; Zhang L; Zhang T; Zhao J; Li J; Middleton A; Carmichael PL; Peng S
    Toxicol In Vitro; 2018 Sep; 51():1-10. PubMed ID: 29729358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PINK1/Parkin-mediated mitophagy in mammalian cells.
    Eiyama A; Okamoto K
    Curr Opin Cell Biol; 2015 Apr; 33():95-101. PubMed ID: 25697963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mitochondrial kinase PINK1: functions beyond mitophagy.
    Voigt A; Berlemann LA; Winklhofer KF
    J Neurochem; 2016 Oct; 139 Suppl 1():232-239. PubMed ID: 27251035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.