BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 30249664)

  • 1. Interferometric plasmonic imaging and detection of single exosomes.
    Yang Y; Shen G; Wang H; Li H; Zhang T; Tao N; Ding X; Yu H
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):10275-10280. PubMed ID: 30249664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of exosome concentration in solution using surface plasmon resonance spectroscopy.
    Rupert DL; Lässer C; Eldh M; Block S; Zhdanov VP; Lotvall JO; Bally M; Höök F
    Anal Chem; 2014 Jun; 86(12):5929-36. PubMed ID: 24848946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-Free Exosome Detection Based on a Low-Cost Plasmonic Biosensor Array Integrated with Microfluidics.
    Lv X; Geng Z; Su Y; Fan Z; Wang S; Fang W; Chen H
    Langmuir; 2019 Jul; 35(30):9816-9824. PubMed ID: 31268344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection and Characterization of Different Brain-Derived Subpopulations of Plasma Exosomes by Surface Plasmon Resonance Imaging.
    Picciolini S; Gualerzi A; Vanna R; Sguassero A; Gramatica F; Bedoni M; Masserini M; Morasso C
    Anal Chem; 2018 Aug; 90(15):8873-8880. PubMed ID: 29972017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor.
    Im H; Shao H; Park YI; Peterson VM; Castro CM; Weissleder R; Lee H
    Nat Biotechnol; 2014 May; 32(5):490-5. PubMed ID: 24752081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free imaging and biomarker analysis of exosomes with plasmonic scattering microscopy.
    Zhang P; Jiang J; Zhou X; Kolay J; Wang R; Wan Z; Wang S
    Chem Sci; 2022 Nov; 13(43):12760-12768. PubMed ID: 36519046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical and surface plasmonic approaches to characterize extracellular vesicles. A review.
    Shpacovitch V; Hergenröder R
    Anal Chim Acta; 2018 Apr; 1005():1-15. PubMed ID: 29389314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free detection of exosomes using a surface plasmon resonance biosensor.
    Sina AA; Vaidyanathan R; Wuethrich A; Carrascosa LG; Trau M
    Anal Bioanal Chem; 2019 Mar; 411(7):1311-1318. PubMed ID: 30719562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Extracellular Vesicles by Surface Plasmon Resonance.
    Im H; Yang K; Lee H; Castro CM
    Methods Mol Biol; 2017; 1660():133-141. PubMed ID: 28828653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bridging exosome and liposome through zirconium-phosphate coordination chemistry: a new method for exosome detection.
    Wang L; Yang Y; Liu Y; Ning L; Xiang Y; Li G
    Chem Commun (Camb); 2019 Feb; 55(18):2708-2711. PubMed ID: 30758019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoplasmonic pillars engineered for single exosome detection.
    Raghu D; Christodoulides JA; Christophersen M; Liu JL; Anderson GP; Robitaille M; Byers JM; Raphael MP
    PLoS One; 2018; 13(8):e0202773. PubMed ID: 30142169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering hybrid exosomes by membrane fusion with liposomes.
    Sato YT; Umezaki K; Sawada S; Mukai SA; Sasaki Y; Harada N; Shiku H; Akiyoshi K
    Sci Rep; 2016 Feb; 6():21933. PubMed ID: 26911358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D plasmonic nanobowl platform for the study of exosomes in solution.
    Lee C; Carney RP; Hazari S; Smith ZJ; Knudson A; Robertson CS; Lam KS; Wachsmann-Hogiu S
    Nanoscale; 2015; 7(20):9290-7. PubMed ID: 25939587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apertureless near-field optical microscopy: differences between heterodyne interferometric and non-interferometric images.
    Esteban R; Vogelgesang R; Kern K
    Ultramicroscopy; 2011; 111(9-10):1469-74. PubMed ID: 21930018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel instrument for surface plasmon polariton tracking in space and time.
    Sandtke M; Engelen RJ; Schoenmaker H; Attema I; Dekker H; Cerjak I; Korterik JP; Segerink FB; Kuipers L
    Rev Sci Instrum; 2008 Jan; 79(1):013704. PubMed ID: 18248036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vesicle fusion studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy.
    Morigaki K; Tawa K
    Biophys J; 2006 Aug; 91(4):1380-7. PubMed ID: 16731563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Sample Concentration on Nanoparticle Tracking Analysis of Small Extracellular Vesicles and Liposomes Mimicking the Physicochemical Properties of Exosomes.
    Yahata S; Hirose M; Ueno T; Nagumo H; Sakai-Kato K
    Chem Pharm Bull (Tokyo); 2021; 69(11):1045-1053. PubMed ID: 34719585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post isolation modification of exosomes for nanomedicine applications.
    Hood JL
    Nanomedicine (Lond); 2016 Jul; 11(13):1745-56. PubMed ID: 27348448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunctional Detection of Extracellular Vesicles with Surface Plasmon Resonance Microscopy.
    Yang Y; Zhai C; Zeng Q; Khan AL; Yu H
    Anal Chem; 2020 Apr; 92(7):4884-4890. PubMed ID: 32131583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical sensing and determination of complex reflection coefficients of plasmonic structures using transmission interferometric plasmonic sensor.
    Sannomiya T; Balmer TE; Hafner C; Heuberger M; Vörös J
    Rev Sci Instrum; 2010 May; 81(5):053102. PubMed ID: 20515119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.