These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 30249805)

  • 1. Nature and Nurture: Brain Region-Specific Inheritance of Sleep Neurophysiology in Adolescence.
    Rusterholz T; Hamann C; Markovic A; Schmidt SJ; Achermann P; Tarokh L
    J Neurosci; 2018 Oct; 38(43):9275-9285. PubMed ID: 30249805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heritability of REM sleep neurophysiology in adolescence.
    Markovic A; Kaess M; Tarokh L
    Transl Psychiatry; 2022 Sep; 12(1):399. PubMed ID: 36130941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow oscillation-spindle coupling predicts enhanced memory formation from childhood to adolescence.
    Hahn MA; Heib D; Schabus M; Hoedlmoser K; Helfrich RF
    Elife; 2020 Jun; 9():. PubMed ID: 32579108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental Factors Shape Sleep EEG Connectivity During Early Adolescence.
    Markovic A; Kaess M; Tarokh L
    Cereb Cortex; 2020 Oct; 30(11):5780-5791. PubMed ID: 32488247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sleep spindle maturity promotes slow oscillation-spindle coupling across child and adolescent development.
    Joechner AK; Hahn MA; Gruber G; Hoedlmoser K; Werkle-Bergner M
    Elife; 2023 Nov; 12():. PubMed ID: 37999945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High heritability of adolescent sleep-wake behavior on free, but not school days: a long-term twin study.
    Inderkum AP; Tarokh L
    Sleep; 2018 Mar; 41(3):. PubMed ID: 29329461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gender differences in adolescent sleep neurophysiology: a high-density sleep EEG study.
    Markovic A; Kaess M; Tarokh L
    Sci Rep; 2020 Sep; 10(1):15935. PubMed ID: 32985555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An infant sleep electroencephalographic marker of thalamocortical connectivity predicts behavioral outcome in late infancy.
    Jaramillo V; Schoch SF; Markovic A; Kohler M; Huber R; Lustenberger C; Kurth S
    Neuroimage; 2023 Apr; 269():119924. PubMed ID: 36739104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Closed-Loop Slow-Wave tACS Improves Sleep-Dependent Long-Term Memory Generalization by Modulating Endogenous Oscillations.
    Ketz N; Jones AP; Bryant NB; Clark VP; Pilly PK
    J Neurosci; 2018 Aug; 38(33):7314-7326. PubMed ID: 30037830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Spindle Variability.
    Gonzalez C; Jiang X; Gonzalez-Martinez J; Halgren E
    J Neurosci; 2022 Jun; 42(22):4517-4537. PubMed ID: 35477906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Oscillating Sounds to Manipulate Sleep Spindles.
    Antony JW; Paller KA
    Sleep; 2017 Mar; 40(3):. PubMed ID: 28364415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of γ and spindle-range power by slow oscillations in scalp sleep EEG of children.
    Piantoni G; Astill RG; Raymann RJ; Vis JC; Coppens JE; Van Someren EJ
    Int J Psychophysiol; 2013 Aug; 89(2):252-8. PubMed ID: 23403325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thalamic dysfunction in schizophrenia suggested by whole-night deficits in slow and fast spindles.
    Ferrarelli F; Peterson MJ; Sarasso S; Riedner BA; Murphy MJ; Benca RM; Bria P; Kalin NH; Tononi G
    Am J Psychiatry; 2010 Nov; 167(11):1339-48. PubMed ID: 20843876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEG Σ and slow-wave activity during NREM sleep correlate with overnight declarative and procedural memory consolidation.
    Holz J; Piosczyk H; Feige B; Spiegelhalder K; Baglioni C; Riemann D; Nissen C
    J Sleep Res; 2012 Dec; 21(6):612-9. PubMed ID: 22591117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heritability of Sleep EEG Topography in Adolescence: Results from a Longitudinal Twin Study.
    Markovic A; Achermann P; Rusterholz T; Tarokh L
    Sci Rep; 2018 May; 8(1):7334. PubMed ID: 29743546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep spindles in humans: insights from intracranial EEG and unit recordings.
    Andrillon T; Nir Y; Staba RJ; Ferrarelli F; Cirelli C; Tononi G; Fried I
    J Neurosci; 2011 Dec; 31(49):17821-34. PubMed ID: 22159098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling of gamma band activity to sleep spindle oscillations - a combined EEG/MEG study.
    Weber FD; Supp GG; Klinzing JG; Mölle M; Engel AK; Born J
    Neuroimage; 2021 Jan; 224():117452. PubMed ID: 33059050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Longitudinal Analysis of Sleep Spindle Maturation from Childhood through Late Adolescence.
    Zhang ZY; Campbell IG; Dhayagude P; Espino HC; Feinberg I
    J Neurosci; 2021 May; 41(19):4253-4261. PubMed ID: 33785642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slow oscillations during sleep coordinate interregional communication in cortical networks.
    Cox R; van Driel J; de Boer M; Talamini LM
    J Neurosci; 2014 Dec; 34(50):16890-901. PubMed ID: 25505340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heritability of sleep electroencephalogram.
    Ambrosius U; Lietzenmaier S; Wehrle R; Wichniak A; Kalus S; Winkelmann J; Bettecken T; Holsboer F; Yassouridis A; Friess E
    Biol Psychiatry; 2008 Aug; 64(4):344-8. PubMed ID: 18405882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.