BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 30249963)

  • 1. Thermotolerant Yeast Kluyveromyces marxianus Reveals More Tolerance to Heat Shock than the Brewery Yeast Saccharomyces cerevisiae.
    Matsumoto I; Arai T; Nishimoto Y; Leelavatcharamas V; Furuta M; Kishida M
    Biocontrol Sci; 2018; 23(3):133-138. PubMed ID: 30249963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatty acid addition and thermotolerance of Kluyveromyces marxianus.
    Mejía-Barajas J; Montoya-Pérez R; Manzo-Avalos S; Cortés-Rojo C; Riveros-Rosas H; Cervantes C; Saavedra-Molina A
    FEMS Microbiol Lett; 2018 Apr; 365(7):. PubMed ID: 29481633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct Metabolic Flow in Response to Temperature in Thermotolerant Kluyveromyces marxianus.
    Kosaka T; Tsuzuno T; Nishida S; Pattanakittivorakul S; Murata M; Miyakawa I; Lertwattanasakul N; Limtong S; Yamada M
    Appl Environ Microbiol; 2022 Mar; 88(6):e0200621. PubMed ID: 35080905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Kluyveromyces marxianus as a Robust Synthetic Biology Platform Host.
    Cernak P; Estrela R; Poddar S; Skerker JM; Cheng YF; Carlson AK; Chen B; Glynn VM; Furlan M; Ryan OW; Donnelly MK; Arkin AP; Taylor JW; Cate JHD
    mBio; 2018 Sep; 9(5):. PubMed ID: 30254120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative stress and antioxidant response in a thermotolerant yeast.
    Mejía-Barajas JA; Montoya-Pérez R; Salgado-Garciglia R; Aguilera-Aguirre L; Cortés-Rojo C; Mejía-Zepeda R; Arellano-Plaza M; Saavedra-Molina A
    Braz J Microbiol; 2017; 48(2):326-332. PubMed ID: 28094115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome analysis of the thermotolerant yeast Kluyveromyces marxianus CCT 7735 under ethanol stress.
    Diniz RHS; Villada JC; Alvim MCT; Vidigal PMP; Vieira NM; Lamas-Maceiras M; Cerdán ME; González-Siso MI; Lahtvee PJ; da Silveira WB
    Appl Microbiol Biotechnol; 2017 Sep; 101(18):6969-6980. PubMed ID: 28776098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ethanol production through simultaneous saccharification and fermentation of switchgrass using Saccharomyces cerevisiae D(5)A and thermotolerant Kluyveromyces marxianus IMB strains.
    Faga BA; Wilkins MR; Banat IM
    Bioresour Technol; 2010 Apr; 101(7):2273-9. PubMed ID: 19939673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elevated temperatures do not trigger a conserved metabolic network response among thermotolerant yeasts.
    Lehnen M; Ebert BE; Blank LM
    BMC Microbiol; 2019 May; 19(1):100. PubMed ID: 31101012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survival of Kluyveromyces marxianus with stigmasterol as subjected to freezing stress.
    Tantratian S; Sae-Ngow A; Pradistsuwan C; Prakitchaiwattana C; Pukahuta C
    J Biosci Bioeng; 2019 Jul; 128(1):39-43. PubMed ID: 30718147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acquisition of thermotolerant yeast Saccharomyces cerevisiae by breeding via stepwise adaptation.
    Satomura A; Katsuyama Y; Miura N; Kuroda K; Tomio A; Bamba T; Fukusaki E; Ueda M
    Biotechnol Prog; 2013; 29(5):1116-23. PubMed ID: 24115578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering the thermotolerant industrial yeast Kluyveromyces marxianus for anaerobic growth.
    Dekker WJC; Ortiz-Merino RA; Kaljouw A; Battjes J; Wiering FW; Mooiman C; Torre P; Pronk JT
    Metab Eng; 2021 Sep; 67():347-364. PubMed ID: 34303845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction and analysis of a Kluyveromyces marxianus genome-scale metabolic model.
    Marcišauskas S; Ji B; Nielsen J
    BMC Bioinformatics; 2019 Nov; 20(1):551. PubMed ID: 31694544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trehalose overproduction affects the stress tolerance of Kluyveromyces marxianus ambiguously.
    Erdei E; Molnár M; Gyémánt G; Antal K; Emri T; Pócsi I; Nagy J
    Bioresour Technol; 2011 Jul; 102(14):7232-5. PubMed ID: 21592782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing cell viability and ethanol fermentation of the thermotolerant yeast Kluyveromyces marxianus and Saccharomyces cerevisiae on steam-exploded biomass treated with laccase.
    Moreno AD; Ibarra D; Ballesteros I; González A; Ballesteros M
    Bioresour Technol; 2013 May; 135():239-45. PubMed ID: 23265821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042.
    Nonklang S; Abdel-Banat BM; Cha-aim K; Moonjai N; Hoshida H; Limtong S; Yamada M; Akada R
    Appl Environ Microbiol; 2008 Dec; 74(24):7514-21. PubMed ID: 18931291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing.
    Hu N; Yuan B; Sun J; Wang SA; Li FL
    Appl Microbiol Biotechnol; 2012 Sep; 95(5):1359-68. PubMed ID: 22760784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection of a thermotolerant Kluyveromyces marxianus strain with potential application for cellulosic ethanol production by simultaneous saccharification and fermentation.
    Castro RC; Roberto IC
    Appl Biochem Biotechnol; 2014 Feb; 172(3):1553-64. PubMed ID: 24222495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional and translational regulation of major heat shock proteins and patterns of trehalose mobilization during hyperthermic recovery in repressed and derepressed Saccharomyces cerevisiae.
    Gross C; Watson K
    Can J Microbiol; 1998 Apr; 44(4):341-50. PubMed ID: 9674106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acquisition of thermotolerance in Saccharomyces cerevisiae without heat shock protein hsp 104 and in the absence of protein synthesis.
    De Virgilio C; Piper P; Boller T; Wiemken A
    FEBS Lett; 1991 Aug; 288(1-2):86-90. PubMed ID: 1831771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 70-kilodalton heat-shock proteins of the SSA subfamily negatively modulate heat-shock-induced accumulation of trehalose and promote recovery from heat stress in the yeast, Saccharomyces cerevisiae.
    Hottiger T; De Virgilio C; Bell W; Boller T; Wiemken A
    Eur J Biochem; 1992 Nov; 210(1):125-32. PubMed ID: 1446665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.