These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 30249999)

  • 1. A Review on the Use of Hydroxyapatite-Carbonaceous Structure Composites in Bone Replacement Materials for Strengthening Purposes.
    Siddiqui HA; Pickering KL; Mucalo MR
    Materials (Basel); 2018 Sep; 11(10):. PubMed ID: 30249999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctional Hydroxyapatite Composites for Orthopedic Applications: A Review.
    George SM; Nayak C; Singh I; Balani K
    ACS Biomater Sci Eng; 2022 Aug; 8(8):3162-3186. PubMed ID: 35838237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Processing and mechanical properties of hydroxyapatite reinforced with hydroxyapatite whiskers.
    Suchanek W; Yashima M; Kakihana M; Yoshimura M
    Biomaterials; 1996 Sep; 17(17):1715-23. PubMed ID: 8866034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural performance of poultry eggshell derived hydroxyapatite based high density polyethylene bio-composites.
    Oladele IO; Agbabiaka OG; Adediran AA; Akinwekomi AD; Balogun AO
    Heliyon; 2019 Oct; 5(10):e02552. PubMed ID: 31687481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic Nacre-like Hydroxyapatite/Polymer Composites for Bone Implants.
    Tabrizian P; Sun H; Jargalsaikhan U; Sui T; Davis S; Su B
    J Funct Biomater; 2023 Jul; 14(8):. PubMed ID: 37623638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxyapatite: A journey from biomaterials to advanced functional materials.
    Mondal S; Park S; Choi J; Vu TTH; Doan VHM; Vo TT; Lee B; Oh J
    Adv Colloid Interface Sci; 2023 Nov; 321():103013. PubMed ID: 37839281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, mechanical properties, and in vitro biocompatibility with osteoblasts of calcium silicate-reduced graphene oxide composites.
    Mehrali M; Moghaddam E; Shirazi SF; Baradaran S; Mehrali M; Latibari ST; Metselaar HS; Kadri NA; Zandi K; Osman NA
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):3947-62. PubMed ID: 24588873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration.
    Fang J; Li P; Lu X; Fang L; Lü X; Ren F
    Acta Biomater; 2019 Apr; 88():503-513. PubMed ID: 30772515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxyapatite-titanium bulk composites for bone tissue engineering applications.
    Kumar A; Biswas K; Basu B
    J Biomed Mater Res A; 2015 Feb; 103(2):791-806. PubMed ID: 24737723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale hydroxyapatite particles for bone tissue engineering.
    Zhou H; Lee J
    Acta Biomater; 2011 Jul; 7(7):2769-81. PubMed ID: 21440094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved dispersion of SiC whisker in nano hydroxyapatite and effect of atmospheres on sintering of the SiC whisker reinforced nano hydroxyapatite composites.
    Zhao X; Yang J; Xin H; Wang X; Zhang L; He F; Liu Q; Zhang W
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():135-145. PubMed ID: 30033240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved nanomechanical and in-vitro biocompatibility of graphene oxide-carbon nanotube hydroxyapatite hybrid composites by synergistic effect.
    Jyoti J; Kiran A; Sandhu M; Kumar A; Singh BP; Kumar N
    J Mech Behav Biomed Mater; 2021 May; 117():104376. PubMed ID: 33618240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the addition of boron nitride nanoplate on the fracture toughness, flexural strength, and Weibull Distribution of hydroxyapatite composites prepared by spark plasma sintering.
    Aguirre TG; Cramer CL; Torres VP; Hammann TJ; Holland TB; Ma K
    J Mech Behav Biomed Mater; 2019 May; 93():105-117. PubMed ID: 30785076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and Microstructure of Laminated HAP⁻45S5 Bioglass Ceramics by Spark Plasma Sintering.
    Meng Y; Qiang W; Pang J
    Materials (Basel); 2019 Feb; 12(3):. PubMed ID: 30720770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano Hydroxyapatite for Biomedical Applications Derived from Chemical and Natural Sources by Simple Precipitation Method.
    Kalpana M; Nagalakshmi R
    Appl Biochem Biotechnol; 2023 Jun; 195(6):3994-4010. PubMed ID: 35596884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An overview of graphene-based hydroxyapatite composites for orthopedic applications.
    Li M; Xiong P; Yan F; Li S; Ren C; Yin Z; Li A; Li H; Ji X; Zheng Y; Cheng Y
    Bioact Mater; 2018 Mar; 3(1):1-18. PubMed ID: 29744438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioactive ceramic composites sintered from hydroxyapatite and silica at 1,200 degrees C: preparation, microstructures and in vitro bone-like layer growth.
    Li XW; Yasuda HY; Umakoshi Y
    J Mater Sci Mater Med; 2006 Jun; 17(6):573-81. PubMed ID: 16691357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxyapatite-Based Natural Biopolymer Composite for Tissue Regeneration.
    Alkaron W; Almansoori A; Balázsi K; Balázsi C
    Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties.
    Salarian M; Xu WZ; Wang Z; Sham TK; Charpentier PA
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16918-31. PubMed ID: 25184699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure and Mechanical Properties of Nano-Carbon Reinforced Titanium Matrix/Hydroxyapatite Biocomposites Prepared by Spark Plasma Sintering.
    Li F; Jiang X; Shao Z; Zhu D; Luo Z
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30223566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.