These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30250209)

  • 1. Direct electric field imaging of graphene defects.
    Ishikawa R; Findlay SD; Seki T; Sánchez-Santolino G; Kohno Y; Ikuhara Y; Shibata N
    Nat Commun; 2018 Sep; 9(1):3878. PubMed ID: 30250209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Visualization of Local Electromagnetic Field Structures by Scanning Transmission Electron Microscopy.
    Shibata N; Findlay SD; Matsumoto T; Kohno Y; Seki T; Sánchez-Santolino G; Ikuhara Y
    Acc Chem Res; 2017 Jul; 50(7):1502-1512. PubMed ID: 28677953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atom-by-atom spectroscopy at graphene edge.
    Suenaga K; Koshino M
    Nature; 2010 Dec; 468(7327):1088-90. PubMed ID: 21160475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic electrostatic maps of 1D channels in 2D semiconductors using 4D scanning transmission electron microscopy.
    Fang S; Wen Y; Allen CS; Ophus C; Han GGD; Kirkland AI; Kaxiras E; Warner JH
    Nat Commun; 2019 Mar; 10(1):1127. PubMed ID: 30850616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electric field imaging of single atoms.
    Shibata N; Seki T; Sánchez-Santolino G; Findlay SD; Kohno Y; Matsumoto T; Ishikawa R; Ikuhara Y
    Nat Commun; 2017 May; 8():15631. PubMed ID: 28555629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single atom microscopy.
    Zhou W; Oxley MP; Lupini AR; Krivanek OL; Pennycook SJ; Idrobo JC
    Microsc Microanal; 2012 Dec; 18(6):1342-54. PubMed ID: 23146658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implanting Germanium into Graphene.
    Tripathi M; Markevich A; Böttger R; Facsko S; Besley E; Kotakoski J; Susi T
    ACS Nano; 2018 May; 12(5):4641-4647. PubMed ID: 29727567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic level spatial variations of energy states along graphene edges.
    Warner JH; Lin YC; He K; Koshino M; Suenaga K
    Nano Lett; 2014 Nov; 14(11):6155-9. PubMed ID: 25340312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of active atomic defects in a monolayered tungsten disulphide nanoribbon.
    Liu Z; Suenaga K; Wang Z; Shi Z; Okunishi E; Iijima S
    Nat Commun; 2011; 2():213. PubMed ID: 21364552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic resolution imaging and spectroscopy of barium atoms and functional groups on graphene oxide.
    Boothroyd CB; Moreno MS; Duchamp M; Kovács A; Monge N; Morales GM; Barbero CA; Dunin-Borkowski RE
    Ultramicroscopy; 2014 Oct; 145():66-73. PubMed ID: 24726278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic imaging and spectroscopy of low-dimensional materials with interrupted periodicities.
    Suenaga K; Akiyama-Hasegawa K; Niimi Y; Kobayashi H; Nakamura M; Liu Z; Sato Y; Koshino M; Iijima S
    J Electron Microsc (Tokyo); 2012; 61(5):285-91. PubMed ID: 22811432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Atomic-Scale Structure and Electric Field Imaging of Triazine-Based Crystalline Carbon Nitride.
    Wang W; Cui J; Sun Z; Xie L; Mu X; Huang L; He J
    Adv Mater; 2021 Dec; 33(48):e2106359. PubMed ID: 34569114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic Structure and Spectroscopy of Single Metal (Cr, V) Substitutional Dopants in Monolayer MoS
    Robertson AW; Lin YC; Wang S; Sawada H; Allen CS; Chen Q; Lee S; Lee GD; Lee J; Han S; Yoon E; Kirkland AI; Kim H; Suenaga K; Warner JH
    ACS Nano; 2016 Nov; 10(11):10227-10236. PubMed ID: 27934090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic structure of defects and dopants in 2D layered transition metal dichalcogenides.
    Wang S; Robertson A; Warner JH
    Chem Soc Rev; 2018 Aug; 47(17):6764-6794. PubMed ID: 29974919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic resolution imaging of graphene by transmission electron microscopy.
    Robertson AW; Warner JH
    Nanoscale; 2013 May; 5(10):4079-93. PubMed ID: 23595204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic-Scale Imaging of a Free-Standing Monolayer Clay Mineral Nanosheet Using Scanning Transmission Electron Microscopy.
    Akita I; Ishida Y; Yonezawa T
    J Phys Chem Lett; 2020 May; 11(9):3357-3361. PubMed ID: 32248680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous Identification of Low and High Atomic Number Atoms in Monolayer 2D Materials Using 4D Scanning Transmission Electron Microscopy.
    Wen Y; Ophus C; Allen CS; Fang S; Chen J; Kaxiras E; Kirkland AI; Warner JH
    Nano Lett; 2019 Sep; 19(9):6482-6491. PubMed ID: 31430158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic-Level Dynamics of Point Vacancies and the Induced Stretched Defects in 2D Monolayer PtSe
    Chen J; Zhou J; Xu W; Wen Y; Liu Y; Warner JH
    Nano Lett; 2022 Apr; 22(8):3289-3297. PubMed ID: 35389659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging and dynamics of light atoms and molecules on graphene.
    Meyer JC; Girit CO; Crommie MF; Zettl A
    Nature; 2008 Jul; 454(7202):319-22. PubMed ID: 18633414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping 1D Confined Electromagnetic Edge States in 2D Monolayer Semiconducting MoS
    Wen Y; Fang S; Coupin M; Lu Y; Ophus C; Kaxiras E; Warner JH
    ACS Nano; 2022 Apr; 16(4):6657-6665. PubMed ID: 35344654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.