These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 30250210)

  • 21. Computational identification of binding energy hot spots in protein-RNA complexes using an ensemble approach.
    Pan Y; Wang Z; Zhan W; Deng L
    Bioinformatics; 2018 May; 34(9):1473-1480. PubMed ID: 29281004
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting Hot Spot Residues at Protein-DNA Binding Interfaces Based on Sequence Information.
    Yao L; Wang H; Bin Y
    Interdiscip Sci; 2021 Mar; 13(1):1-11. PubMed ID: 33068261
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein binding hot spots prediction from sequence only by a new ensemble learning method.
    Hu SS; Chen P; Wang B; Li J
    Amino Acids; 2017 Oct; 49(10):1773-1785. PubMed ID: 28766075
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PDRLGB: precise DNA-binding residue prediction using a light gradient boosting machine.
    Deng L; Pan J; Xu X; Yang W; Liu C; Liu H
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):522. PubMed ID: 30598073
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein-DNA interface hotspots prediction based on fusion features of embeddings of protein language model and handcrafted features.
    Li X; Wang GA; Wei Z; Wang H; Zhu X
    Comput Biol Chem; 2023 Dec; 107():107970. PubMed ID: 37866116
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SemiHS: an iterative semi-supervised approach for predicting protein-protein interaction hot spots.
    Deng L; Guan JH; Dong QW; Zhou SG
    Protein Pept Lett; 2011 Sep; 18(9):896-905. PubMed ID: 21529341
    [TBL] [Abstract][Full Text] [Related]  

  • 27. iPNHOT: a knowledge-based approach for identifying protein-nucleic acid interaction hot spots.
    Zhu X; Liu L; He J; Fang T; Xiong Y; Mitchell JC
    BMC Bioinformatics; 2020 Jul; 21(1):289. PubMed ID: 32631222
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Feature and Algorithm Selection Method for Improving the Prediction of Protein Structural Class.
    Ni Q; Chen L
    Comb Chem High Throughput Screen; 2017; 20(7):612-621. PubMed ID: 28292249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of Nitrated Tyrosine Residues in Protein Sequences by Extreme Learning Machine and Feature Selection Methods.
    Chen L; Wang S; Zhang YH; Wei L; Xu X; Huang T; Cai YD
    Comb Chem High Throughput Screen; 2018; 21(6):393-402. PubMed ID: 29848272
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Machine Learning Approach for Hot-Spot Detection at Protein-Protein Interfaces.
    Melo R; Fieldhouse R; Melo A; Correia JD; Cordeiro MN; Gümüş ZH; Costa J; Bonvin AM; Moreira IS
    Int J Mol Sci; 2016 Jul; 17(8):. PubMed ID: 27472327
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accurate prediction of hot spot residues through physicochemical characteristics of amino acid sequences.
    Chen P; Li J; Wong L; Kuwahara H; Huang JZ; Gao X
    Proteins; 2013 Aug; 81(8):1351-62. PubMed ID: 23504705
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A boosting approach for prediction of protein-RNA binding residues.
    Tang Y; Liu D; Wang Z; Wen T; Deng L
    BMC Bioinformatics; 2017 Dec; 18(Suppl 13):465. PubMed ID: 29219069
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of hot spots in protein interfaces using extreme learning machines with the information of spatial neighbour residues.
    Wang L; Zhang W; Gao Q; Xiong C
    IET Syst Biol; 2014 Aug; 8(4):184-90. PubMed ID: 25075532
    [TBL] [Abstract][Full Text] [Related]  

  • 34. HMMPred: Accurate Prediction of DNA-Binding Proteins Based on HMM Profiles and XGBoost Feature Selection.
    Sang X; Xiao W; Zheng H; Yang Y; Liu T
    Comput Math Methods Med; 2020; 2020():1384749. PubMed ID: 32300371
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis and Prediction of Myristoylation Sites Using the mRMR Method, the IFS Method and an Extreme Learning Machine Algorithm.
    Wang S; Zhang YH; Huang G; Chen L; Cai YD
    Comb Chem High Throughput Screen; 2017; 20(2):96-106. PubMed ID: 28000567
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction and targeting of GPCR oligomer interfaces.
    Barreto CAV; Baptista SJ; Preto AJ; Matos-Filipe P; Mourão J; Melo R; Moreira I
    Prog Mol Biol Transl Sci; 2020; 169():105-149. PubMed ID: 31952684
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Techniques for Developing Reliable Machine Learning Classifiers Applied to Understanding and Predicting Protein:Protein Interaction Hot Spots.
    Chen J; Kuhn LA; Raschka S
    Methods Mol Biol; 2024; 2714():235-268. PubMed ID: 37676603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of protein-protein interaction sites through eXtreme gradient boosting with kernel principal component analysis.
    Wang X; Zhang Y; Yu B; Salhi A; Chen R; Wang L; Liu Z
    Comput Biol Med; 2021 Jul; 134():104516. PubMed ID: 34119922
    [TBL] [Abstract][Full Text] [Related]  

  • 39. HotSprint: database of computational hot spots in protein interfaces.
    Guney E; Tuncbag N; Keskin O; Gursoy A
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D662-6. PubMed ID: 17959648
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hot spot prediction in protein-protein interactions by an ensemble system.
    Liu Q; Chen P; Wang B; Zhang J; Li J
    BMC Syst Biol; 2018 Dec; 12(Suppl 9):132. PubMed ID: 30598091
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.