BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 30250231)

  • 1. PHD3 regulates glucose metabolism by suppressing stress-induced signalling and optimising gluconeogenesis and insulin signalling in hepatocytes.
    Yano H; Sakai M; Matsukawa T; Yagi T; Naganuma T; Mitsushima M; Iida S; Inaba Y; Inoue H; Unoki-Kubota H; Kaburagi Y; Asahara SI; Kido Y; Minami S; Kasuga M; Matsumoto M
    Sci Rep; 2018 Sep; 8(1):14290. PubMed ID: 30250231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CITED2 links hormonal signaling to PGC-1α acetylation in the regulation of gluconeogenesis.
    Sakai M; Matsumoto M; Tujimura T; Yongheng C; Noguchi T; Inagaki K; Inoue H; Hosooka T; Takazawa K; Kido Y; Yasuda K; Hiramatsu R; Matsuki Y; Kasuga M
    Nat Med; 2012 Mar; 18(4):612-7. PubMed ID: 22426420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The GCN5-CITED2-PKA signalling module controls hepatic glucose metabolism through a cAMP-induced substrate switch.
    Sakai M; Tujimura-Hayakawa T; Yagi T; Yano H; Mitsushima M; Unoki-Kubota H; Kaburagi Y; Inoue H; Kido Y; Kasuga M; Matsumoto M
    Nat Commun; 2016 Nov; 7():13147. PubMed ID: 27874008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. p38 Mitogen-activated protein kinase plays a stimulatory role in hepatic gluconeogenesis.
    Cao W; Collins QF; Becker TC; Robidoux J; Lupo EG; Xiong Y; Daniel KW; Floering L; Collins S
    J Biol Chem; 2005 Dec; 280(52):42731-7. PubMed ID: 16272151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PGC1A regulates the IRS1:IRS2 ratio during fasting to influence hepatic metabolism downstream of insulin.
    Besse-Patin A; Jeromson S; Levesque-Damphousse P; Secco B; Laplante M; Estall JL
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4285-4290. PubMed ID: 30770439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proline hydroxylation of CREB-regulated transcriptional coactivator 2 controls hepatic glucose metabolism.
    Xue Y; Cui A; Wei S; Ma F; Liu Z; Fang X; Huo S; Sun X; Li W; Hu Z; Liu Y; Cai G; Su W; Zhao J; Yan X; Gao C; Wen J; Zhang H; Li H; Liu Y; Lin X; Xu Y; Fu W; Fang J; Li Y
    Proc Natl Acad Sci U S A; 2023 Jun; 120(23):e2219419120. PubMed ID: 37252972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nuclear bile acid receptor FXR is a PKA- and FOXA2-sensitive activator of fasting hepatic gluconeogenesis.
    Ploton M; Mazuy C; Gheeraert C; Dubois V; Berthier A; Dubois-Chevalier J; Maréchal X; Bantubungi K; Diemer H; Cianférani S; Strub JM; Helleboid-Chapman A; Eeckhoute J; Staels B; Lefebvre P
    J Hepatol; 2018 Nov; 69(5):1099-1109. PubMed ID: 29981427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange.
    Liu Y; Dentin R; Chen D; Hedrick S; Ravnskjaer K; Schenk S; Milne J; Meyers DJ; Cole P; Yates J; Olefsky J; Guarente L; Montminy M
    Nature; 2008 Nov; 456(7219):269-73. PubMed ID: 18849969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. p38 Mitogen-activated protein kinase mediates free fatty acid-induced gluconeogenesis in hepatocytes.
    Collins QF; Xiong Y; Lupo EG; Liu HY; Cao W
    J Biol Chem; 2006 Aug; 281(34):24336-44. PubMed ID: 16803882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small Hepatitis B Virus Surface Antigen Promotes Hepatic Gluconeogenesis via Enhancing Glucagon/cAMP/Protein Kinase A/CREB Signaling.
    Chen Y; Wang B; Ou X; Wu Y; He Y; Lin X; Lin X
    J Virol; 2022 Dec; 96(23):e0102022. PubMed ID: 36394315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of hepatic gluconeogenesis by nuclear factor Y transcription factor in mice.
    Zhang Y; Guan Q; Liu Y; Zhang Y; Chen Y; Chen J; Liu Y; Su Z
    J Biol Chem; 2018 May; 293(20):7894-7904. PubMed ID: 29530977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amelioration of glucose tolerance by hepatic inhibition of nuclear factor kappaB in db/db mice.
    Tamura Y; Ogihara T; Uchida T; Ikeda F; Kumashiro N; Nomiyama T; Sato F; Hirose T; Tanaka Y; Mochizuki H; Kawamori R; Watada H
    Diabetologia; 2007 Jan; 50(1):131-41. PubMed ID: 17093946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of prolyl hydroxylases increases hepatic insulin and decreases glucagon sensitivity by an HIF-2α-dependent mechanism.
    Riopel M; Moon JS; Bandyopadhyay GK; You S; Lam K; Liu X; Kisseleva T; Brenner D; Lee YS
    Mol Metab; 2020 Nov; 41():101039. PubMed ID: 32534258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gluconeogenic signals regulate iron homeostasis via hepcidin in mice.
    Vecchi C; Montosi G; Garuti C; Corradini E; Sabelli M; Canali S; Pietrangelo A
    Gastroenterology; 2014 Apr; 146(4):1060-9. PubMed ID: 24361124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual role of the coactivator TORC2 in modulating hepatic glucose output and insulin signaling.
    Canettieri G; Koo SH; Berdeaux R; Heredia J; Hedrick S; Zhang X; Montminy M
    Cell Metab; 2005 Nov; 2(5):331-8. PubMed ID: 16271533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insulin-Inducible SMILE Inhibits Hepatic Gluconeogenesis.
    Lee JM; Seo WY; Han HS; Oh KJ; Lee YS; Kim DK; Choi S; Choi BH; Harris RA; Lee CH; Koo SH; Choi HS
    Diabetes; 2016 Jan; 65(1):62-73. PubMed ID: 26340929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CREB-upregulated lncRNA MEG3 promotes hepatic gluconeogenesis by regulating miR-302a-3p-CRTC2 axis.
    Zhu X; Li H; Wu Y; Zhou J; Yang G; Wang W; Kang D; Ye S
    J Cell Biochem; 2019 Mar; 120(3):4192-4202. PubMed ID: 30260029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Hepatic Gluconeogenesis by Nuclear Receptor Coactivator 6.
    Oh GS; Kim SR; Lee ES; Yoon J; Shin MK; Ryu HK; Kim DS; Kim SW
    Mol Cells; 2022 Apr; 45(4):180-192. PubMed ID: 35258009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DAX-1 acts as a novel corepressor of orphan nuclear receptor HNF4alpha and negatively regulates gluconeogenic enzyme gene expression.
    Nedumaran B; Hong S; Xie YB; Kim YH; Seo WY; Lee MW; Lee CH; Koo SH; Choi HS
    J Biol Chem; 2009 Oct; 284(40):27511-23. PubMed ID: 19651776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decreased Gluconeogenesis in the Absence of Cystathionine Gamma-Lyase and the Underlying Mechanisms.
    Untereiner AA; Wang R; Ju Y; Wu L
    Antioxid Redox Signal; 2016 Jan; 24(3):129-40. PubMed ID: 26401978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.