These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 30250388)

  • 41. A deep spatiotemporal graph learning architecture for brain connectivity analysis.
    Azevedo T; Passamonti L; Lio P; Toschi N
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1120-1123. PubMed ID: 33018183
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamical intrinsic functional architecture of the brain during absence seizures.
    Liao W; Zhang Z; Mantini D; Xu Q; Ji GJ; Zhang H; Wang J; Wang Z; Chen G; Tian L; Jiao Q; Zang YF; Lu G
    Brain Struct Funct; 2014 Nov; 219(6):2001-15. PubMed ID: 23913255
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The human connectome from an evolutionary perspective.
    Ardesch DJ; Scholtens LH; van den Heuvel MP
    Prog Brain Res; 2019; 250():129-151. PubMed ID: 31703899
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Two's company, three (or more) is a simplex : Algebraic-topological tools for understanding higher-order structure in neural data.
    Giusti C; Ghrist R; Bassett DS
    J Comput Neurosci; 2016 Aug; 41(1):1-14. PubMed ID: 27287487
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A new method to predict anomaly in brain network based on graph deep learning.
    Mirakhorli J; Amindavar H; Mirakhorli M
    Rev Neurosci; 2020 Aug; 31(6):681-689. PubMed ID: 32678803
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Generative models for network neuroscience: prospects and promise.
    Betzel RF; Bassett DS
    J R Soc Interface; 2017 Nov; 14(136):. PubMed ID: 29187640
    [TBL] [Abstract][Full Text] [Related]  

  • 47. GAT: a graph-theoretical analysis toolbox for analyzing between-group differences in large-scale structural and functional brain networks.
    Hosseini SM; Hoeft F; Kesler SR
    PLoS One; 2012; 7(7):e40709. PubMed ID: 22808240
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neuroplasticity and the brain connectome: what can Jean Talairach's reflections bring to modern psychosurgery?
    Bourdillon P; Apra C; Lévêque M; Vinckier F
    Neurosurg Focus; 2017 Sep; 43(3):E11. PubMed ID: 28859565
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Understanding structural-functional relationships in the human brain: a large-scale network perspective.
    Wang Z; Dai Z; Gong G; Zhou C; He Y
    Neuroscientist; 2015 Jun; 21(3):290-305. PubMed ID: 24962094
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural connectomics in brain diseases.
    Griffa A; Baumann PS; Thiran JP; Hagmann P
    Neuroimage; 2013 Oct; 80():515-26. PubMed ID: 23623973
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Graph theory approach for the structural-functional brain connectome of depression.
    Yun JY; Kim YK
    Prog Neuropsychopharmacol Biol Psychiatry; 2021 Dec; 111():110401. PubMed ID: 34265367
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A dynamic graph convolutional neural network framework reveals new insights into connectome dysfunctions in ADHD.
    Zhao K; Duka B; Xie H; Oathes DJ; Calhoun V; Zhang Y
    Neuroimage; 2022 Feb; 246():118774. PubMed ID: 34861391
    [TBL] [Abstract][Full Text] [Related]  

  • 53. BRAPH: A graph theory software for the analysis of brain connectivity.
    Mijalkov M; Kakaei E; Pereira JB; Westman E; Volpe G;
    PLoS One; 2017; 12(8):e0178798. PubMed ID: 28763447
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Global Network Organization of the Fetal Functional Connectome.
    De Asis-Cruz J; Andersen N; Kapse K; Khrisnamurthy D; Quistorff J; Lopez C; Vezina G; Limperopoulos C
    Cereb Cortex; 2021 May; 31(6):3034-3046. PubMed ID: 33558873
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional brain network architecture supporting the learning of social networks in humans.
    Tompson SH; Kahn AE; Falk EB; Vettel JM; Bassett DS
    Neuroimage; 2020 Apr; 210():116498. PubMed ID: 31917325
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Beyond modularity: Fine-scale mechanisms and rules for brain network reconfiguration.
    Khambhati AN; Mattar MG; Wymbs NF; Grafton ST; Bassett DS
    Neuroimage; 2018 Feb; 166():385-399. PubMed ID: 29138087
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Functional connectomics from a "big data" perspective.
    Xia M; He Y
    Neuroimage; 2017 Oct; 160():152-167. PubMed ID: 28232122
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mapping Individual Brain Networks Using Statistical Similarity in Regional Morphology from MRI.
    Kong XZ; Liu Z; Huang L; Wang X; Yang Z; Zhou G; Zhen Z; Liu J
    PLoS One; 2015; 10(11):e0141840. PubMed ID: 26536598
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mapping the functional connectome in traumatic brain injury: What can graph metrics tell us?
    Caeyenberghs K; Verhelst H; Clemente A; Wilson PH
    Neuroimage; 2017 Oct; 160():113-123. PubMed ID: 27919750
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Scale-Dependent Variability and Quantitative Regimes in Graph-Theoretic Representations of Human Cortical Networks.
    Irimia A; Van Horn JD
    Brain Connect; 2016 Mar; 6(2):152-63. PubMed ID: 26596775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.