These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 30250446)

  • 1. Corrigendum: Recurrent Convolutional Neural Networks: A Better Model of Biological Object Recognition.
    Spoerer CJ; McClure P; Kriegeskorte N
    Front Psychol; 2018; 9():1695. PubMed ID: 30250446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recurrent Convolutional Neural Networks: A Better Model of Biological Object Recognition.
    Spoerer CJ; McClure P; Kriegeskorte N
    Front Psychol; 2017; 8():1551. PubMed ID: 28955272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive detrending to accelerate convolutional gated recurrent unit training for contextual video recognition.
    Jung M; Lee H; Tani J
    Neural Netw; 2018 Sep; 105():356-370. PubMed ID: 29936360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corrigendum to "Identification of Tomato Disease Types and Detection of Infected Areas Based on Deep Convolutional Neural Networks and Object Detection Techniques".
    Wang Q; Qi F; Sun M; Qu J; Xue J
    Comput Intell Neurosci; 2021; 2021():3751479. PubMed ID: 33628211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corrigendum: SCTN: event-based object tracking with energy-efficient deep convolutional spiking neural networks.
    Ji M; Wang Z; Yan R; Liu Q; Xu S; Tang H
    Front Neurosci; 2023; 17():1204334. PubMed ID: 37260839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corrigendum: Improving Patch-Based Convolutional Neural Networks for MRI Brain Tumor Segmentation by Leveraging Location Information.
    Kao PY; Shailja S; Jiang J; Zhang A; Khan A; Chen JW; Manjunath BS
    Front Neurosci; 2020; 14():328. PubMed ID: 32351354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Object class segmentation of RGB-D video using recurrent convolutional neural networks.
    Pavel MS; Schulz H; Behnke S
    Neural Netw; 2017 Apr; 88():105-113. PubMed ID: 28232260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic Identification of Down Syndrome Using Facial Images with Deep Convolutional Neural Network.
    Qin B; Liang L; Wu J; Quan Q; Wang Z; Li D
    Diagnostics (Basel); 2020 Jul; 10(7):. PubMed ID: 32709157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks.
    Rajalingham R; Issa EB; Bashivan P; Kar K; Schmidt K; DiCarlo JJ
    J Neurosci; 2018 Aug; 38(33):7255-7269. PubMed ID: 30006365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convolutional-Neural Network-Based Image Crowd Counting: Review, Categorization, Analysis, and Performance Evaluation.
    Ilyas N; Shahzad A; Kim K
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31861734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corrigendum to "Generating Point Cloud from Measurements and Shapes Based on Convolutional Neural Network: An Application for Building 3D Human Model".
    Nguyen MT; Dang TV; Tran Thi MK; Bao PT
    Comput Intell Neurosci; 2020; 2020():9126140. PubMed ID: 32670368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitigation of Effects of Occlusion on Object Recognition with Deep Neural Networks through Low-Level Image Completion.
    Chandler B; Mingolla E
    Comput Intell Neurosci; 2016; 2016():6425257. PubMed ID: 27340396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beyond core object recognition: Recurrent processes account for object recognition under occlusion.
    Rajaei K; Mohsenzadeh Y; Ebrahimpour R; Khaligh-Razavi SM
    PLoS Comput Biol; 2019 May; 15(5):e1007001. PubMed ID: 31091234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks.
    Yu H; Wu Z; Wang S; Wang Y; Ma X
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28672867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corrigendum: mPD-APP: a mobile-enabled plant diseases diagnosis application using convolutional neural network toward the attainment of a food secure world.
    Asani EO; Osadeyi YP; Adegun AA; Viriri S; Ayoola JA; Kolawole EA
    Front Artif Intell; 2023; 6():1325606. PubMed ID: 38075383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual Object Recognition: Do We (Finally) Know More Now Than We Did?
    Gauthier I; Tarr MJ
    Annu Rev Vis Sci; 2016 Oct; 2():377-396. PubMed ID: 28532357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A New Method of Mixed Gas Identification Based on a Convolutional Neural Network for Time Series Classification.
    Han L; Yu C; Xiao K; Zhao X
    Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31027348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GRUU-Net: Integrated convolutional and gated recurrent neural network for cell segmentation.
    Wollmann T; Gunkel M; Chung I; Erfle H; Rippe K; Rohr K
    Med Image Anal; 2019 Aug; 56():68-79. PubMed ID: 31200289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfer Learning with Convolutional Neural Networks for Classification of Abdominal Ultrasound Images.
    Cheng PM; Malhi HS
    J Digit Imaging; 2017 Apr; 30(2):234-243. PubMed ID: 27896451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corrigendum: Football Players Do Not Show "Neural Efficiency" in Cortical Activity Related to Visuospatial Information Processing During Football Scenes: An EEG Mapping Study.
    Del Percio C; Franzetti M; De Matti AJ; Noce G; Lizio R; Lopez S; Soricelli A; Ferri R; Pascarelli MT; Rizzo M; Triggiani AI; Stocchi F; Limatola C; Babiloni C
    Front Psychol; 2019; 10():1877. PubMed ID: 31555163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.