BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2466 related articles for article (PubMed ID: 30250471)

  • 1. Targeting Checkpoint Receptors and Molecules for Therapeutic Modulation of Natural Killer Cells.
    Kim N; Kim HS
    Front Immunol; 2018; 9():2041. PubMed ID: 30250471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy.
    Dougall WC; Kurtulus S; Smyth MJ; Anderson AC
    Immunol Rev; 2017 Mar; 276(1):112-120. PubMed ID: 28258695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Rise of NK Cell Checkpoints as Promising Therapeutic Targets in Cancer Immunotherapy.
    Sun H; Sun C
    Front Immunol; 2019; 10():2354. PubMed ID: 31681269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NK Cell Dysfunction and Checkpoint Immunotherapy.
    Bi J; Tian Z
    Front Immunol; 2019; 10():1999. PubMed ID: 31552017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Innate Lymphoid Cells: Expression of PD-1 and Other Checkpoints in Normal and Pathological Conditions.
    Mariotti FR; Quatrini L; Munari E; Vacca P; Moretta L
    Front Immunol; 2019; 10():910. PubMed ID: 31105707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting NK Cell Checkpoint Receptors or Molecules for Cancer Immunotherapy.
    Zhang C; Liu Y
    Front Immunol; 2020; 11():1295. PubMed ID: 32714324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NK Cell-Based Immune Checkpoint Inhibition.
    Khan M; Arooj S; Wang H
    Front Immunol; 2020; 11():167. PubMed ID: 32117298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of Metastases Using a New Lymphocyte Checkpoint Target for Cancer Immunotherapy.
    Blake SJ; Stannard K; Liu J; Allen S; Yong MC; Mittal D; Aguilera AR; Miles JJ; Lutzky VP; de Andrade LF; Martinet L; Colonna M; Takeda K; Kühnel F; Gurlevik E; Bernhardt G; Teng MW; Smyth MJ
    Cancer Discov; 2016 Apr; 6(4):446-59. PubMed ID: 26787820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Second- and third-generation drugs for immuno-oncology treatment-The more the better?
    Dempke WCM; Fenchel K; Uciechowski P; Dale SP
    Eur J Cancer; 2017 Mar; 74():55-72. PubMed ID: 28335888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New checkpoints in cancer immunotherapy.
    Ni L; Dong C
    Immunol Rev; 2017 Mar; 276(1):52-65. PubMed ID: 28258699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human NK cells: surface receptors, inhibitory checkpoints, and translational applications.
    Sivori S; Vacca P; Del Zotto G; Munari E; Mingari MC; Moretta L
    Cell Mol Immunol; 2019 May; 16(5):430-441. PubMed ID: 30778167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural killer cells as a promising therapeutic target for cancer immunotherapy.
    Kim N; Lee HH; Lee HJ; Choi WS; Lee J; Kim HS
    Arch Pharm Res; 2019 Jul; 42(7):591-606. PubMed ID: 30895524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IL2/Anti-IL2 Complex Combined with CTLA-4, But Not PD-1, Blockade Rescues Antitumor NK Cell Function by Regulatory T-cell Modulation.
    Caudana P; Núñez NG; De La Rochere P; Pinto A; Denizeau J; Alonso R; Niborski LL; Lantz O; Sedlik C; Piaggio E
    Cancer Immunol Res; 2019 Mar; 7(3):443-457. PubMed ID: 30651291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Killer Ig-Like Receptors (KIRs): Their Role in NK Cell Modulation and Developments Leading to Their Clinical Exploitation.
    Pende D; Falco M; Vitale M; Cantoni C; Vitale C; Munari E; Bertaina A; Moretta F; Del Zotto G; Pietra G; Mingari MC; Locatelli F; Moretta L
    Front Immunol; 2019; 10():1179. PubMed ID: 31231370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of immunosuppressive tumor microenvironment in cholangiocarcinoma by ex vivo targeting immune checkpoint molecules.
    Zhou G; Sprengers D; Mancham S; Erkens R; Boor PPC; van Beek AA; Doukas M; Noordam L; Campos Carrascosa L; de Ruiter V; van Leeuwen RWF; Polak WG; de Jonge J; Groot Koerkamp B; van Rosmalen B; van Gulik TM; Verheij J; IJzermans JNM; Bruno MJ; Kwekkeboom J
    J Hepatol; 2019 Oct; 71(4):753-762. PubMed ID: 31195061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Pathways: Targeting CD96 and TIGIT for Cancer Immunotherapy.
    Blake SJ; Dougall WC; Miles JJ; Teng MW; Smyth MJ
    Clin Cancer Res; 2016 Nov; 22(21):5183-5188. PubMed ID: 27620276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immune checkpoint molecules in natural killer cells as potential targets for cancer immunotherapy.
    Cao Y; Wang X; Jin T; Tian Y; Dai C; Widarma C; Song R; Xu F
    Signal Transduct Target Ther; 2020 Oct; 5(1):250. PubMed ID: 33122640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PD/1-PD-Ls Checkpoint: Insight on the Potential Role of NK Cells.
    Pesce S; Greppi M; Grossi F; Del Zotto G; Moretta L; Sivori S; Genova C; Marcenaro E
    Front Immunol; 2019; 10():1242. PubMed ID: 31214193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Systematic Review of Immunotherapy in Urologic Cancer: Evolving Roles for Targeting of CTLA-4, PD-1/PD-L1, and HLA-G.
    Carosella ED; Ploussard G; LeMaoult J; Desgrandchamps F
    Eur Urol; 2015 Aug; 68(2):267-79. PubMed ID: 25824720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coinhibitory Pathways in Immunotherapy for Cancer.
    Baumeister SH; Freeman GJ; Dranoff G; Sharpe AH
    Annu Rev Immunol; 2016 May; 34():539-73. PubMed ID: 26927206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 124.