BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30250801)

  • 1. MnS Incorporation into Higher Manganese Silicide Yields a Green Thermoelectric Composite with High Performance/Price Ratio.
    Li Z; Dong JF; Sun FH; Asfandiyar ; Pan Y; Wang SF; Wang Q; Zhang D; Zhao L; Li JF
    Adv Sci (Weinh); 2018 Sep; 5(9):1800626. PubMed ID: 30250801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced thermoelectric performance of rough silicon nanowires.
    Hochbaum AI; Chen R; Delgado RD; Liang W; Garnett EC; Najarian M; Majumdar A; Yang P
    Nature; 2008 Jan; 451(7175):163-7. PubMed ID: 18185582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Thermoelectric Power Factor of High-Mobility 2D Electron Gas.
    Ohta H; Kim SW; Kaneki S; Yamamoto A; Hashizume T
    Adv Sci (Weinh); 2018 Jan; 5(1):1700696. PubMed ID: 29375980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significant enhancement in thermoelectric performance of nanostructured higher manganese silicides synthesized employing a melt spinning technique.
    Muthiah S; Singh RC; Pathak BD; Avasthi PK; Kumar R; Kumar A; Srivastava AK; Dhar A
    Nanoscale; 2018 Jan; 10(4):1970-1977. PubMed ID: 29319087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the Thermoelectric Performance of Polycrystalline SnSe by Decoupling Electrical and Thermal Transport through Carbon Fiber Incorporation.
    Yang G; Sang L; Li M; Kazi Nazrul Islam SM; Yue Z; Liu L; Li J; Mitchell DRG; Ye N; Wang X
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12910-12918. PubMed ID: 32101408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Thermoelectric Properties of P-Type Sn-Substituted Higher Manganese Silicides.
    Jiang MX; Yang SR; Tsao IY; Wardhana BS; Hsueh SF; Jang JS; Hsin CL; Lee SW
    Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Thermoelectric Performance of In
    Yin X; Liu JY; Chen L; Wu LM
    Acc Chem Res; 2018 Feb; 51(2):240-247. PubMed ID: 29313668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly porous thermoelectric composites with high figure of merit and low thermal conductivity from solution-synthesized porous Bi
    Park D; Kim M; Kim J
    Dalton Trans; 2023 Nov; 52(44):16398-16405. PubMed ID: 37870571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals.
    Zhao LD; Lo SH; Zhang Y; Sun H; Tan G; Uher C; Wolverton C; Dravid VP; Kanatzidis MG
    Nature; 2014 Apr; 508(7496):373-7. PubMed ID: 24740068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concerted Rattling in CsAg5 Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance.
    Lin H; Tan G; Shen JN; Hao S; Wu LM; Calta N; Malliakas C; Wang S; Uher C; Wolverton C; Kanatzidis MG
    Angew Chem Int Ed Engl; 2016 Sep; 55(38):11431-6. PubMed ID: 27513458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoelectric Performance of 2D Tellurium with Accumulation Contacts.
    Qiu G; Huang S; Segovia M; Venuthurumilli PK; Wang Y; Wu W; Xu X; Ye PD
    Nano Lett; 2019 Mar; 19(3):1955-1962. PubMed ID: 30753783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eco-Friendly Cerium-Cobalt Counter-Doped Bi
    Musah JD; Or SW; Kong L; Roy VAL; Wu CL
    Nanomaterials (Basel); 2023 Oct; 13(20):. PubMed ID: 37887892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing Thermoelectric Performance of CuInTe
    Yang E; Jiang Q; Li G; Tian Z; Li J; Kang H; Chen Z; Guo E; Wang J; Wang T
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49370-49378. PubMed ID: 37824824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple Valence Bands Convergence and Localized Lattice Engineering Lead to Superhigh Thermoelectric Figure of Merit in MnTe.
    Zulkifal S; Wang Z; Zhang X; Siddique S; Yu Y; Wang C; Gong Y; Li S; Li D; Zhang Y; Wang P; Tang G
    Adv Sci (Weinh); 2023 Jun; 10(17):e2206342. PubMed ID: 37092577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the thermoelectric figure of merit.
    Goldsmid HJ
    Sci Technol Adv Mater; 2021 Apr; 22(1):280-284. PubMed ID: 33907527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ba
    Zhang X; Zhang Y; Wu L; Tsuruta A; Mikami M; Cho HJ; Ohta H
    ACS Appl Mater Interfaces; 2022 Jul; 14(29):33355-60. PubMed ID: 35819907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peierls distortion as a route to high thermoelectric performance in In(4)Se(3-delta) crystals.
    Rhyee JS; Lee KH; Lee SM; Cho E; Kim SI; Lee E; Kwon YS; Shim JH; Kotliar G
    Nature; 2009 Jun; 459(7249):965-8. PubMed ID: 19536260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silicide/Silicon Hetero-Junction Structure for Thermoelectric Applications.
    Jun D; Kim S; Choi W; Kim J; Zyung T; Jang M
    J Nanosci Nanotechnol; 2015 Oct; 15(10):7472-5. PubMed ID: 26726353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene).
    Bubnova O; Khan ZU; Malti A; Braun S; Fahlman M; Berggren M; Crispin X
    Nat Mater; 2011 Jun; 10(6):429-33. PubMed ID: 21532583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review of Thermoelectric Generators at Low Operating Temperatures: Working Principles and Materials.
    Zulkepli N; Yunas J; Mohamed MA; Hamzah AA
    Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34206662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.