These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 30250801)

  • 41. Improved Thermoelectric Properties of SrTiO
    Sikam P; Thirayatorn R; Kaewmaraya T; Thongbai P; Moontragoon P; Ikonic Z
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36432025
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of Pr and Yb Dual Doping on the Thermoelectric Properties of CaMnO₃.
    Li C; Chen Q; Yan Y
    Materials (Basel); 2018 Sep; 11(10):. PubMed ID: 30249065
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High thermoelectric performance of two-dimensional SiPGaS/As heterostructures.
    Shahid I; Hu X; Ahmad I; Ali A; Shehzad N; Ahmad S; Zhou Z
    Nanoscale; 2023 Apr; 15(16):7302-7310. PubMed ID: 37014122
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermoelectric Properties of Bi-Doped Magnesium Silicide Stannides.
    Macario LR; Cheng X; Ramirez D; Mori T; Kleinke H
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40585-40591. PubMed ID: 30387592
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe.
    Zhao LD; Tan G; Hao S; He J; Pei Y; Chi H; Wang H; Gong S; Xu H; Dravid VP; Uher C; Snyder GJ; Wolverton C; Kanatzidis MG
    Science; 2016 Jan; 351(6269):141-4. PubMed ID: 26612831
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recent progress in oxide thermoelectric materials: p-type Ca3Co4O9 and n-type SrTiO3(-).
    Ohta H; Sugiura K; Koumoto K
    Inorg Chem; 2008 Oct; 47(19):8429-36. PubMed ID: 18821809
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High thermoelectric performance in low-cost SnS
    He W; Wang D; Wu H; Xiao Y; Zhang Y; He D; Feng Y; Hao YJ; Dong JF; Chetty R; Hao L; Chen D; Qin J; Yang Q; Li X; Song JM; Zhu Y; Xu W; Niu C; Li X; Wang G; Liu C; Ohta M; Pennycook SJ; He J; Li JF; Zhao LD
    Science; 2019 Sep; 365(6460):1418-1424. PubMed ID: 31604269
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermoelectric Properties of Cu
    Siyar M; Cho JY; Jin WC; Hwang EH; Kim M; Park C
    Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31247899
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Low-Toxic, Earth-Abundant Nanostructured Materials for Thermoelectric Applications.
    Jaldurgam FF; Ahmad Z; Touati F
    Nanomaterials (Basel); 2021 Mar; 11(4):. PubMed ID: 33807350
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermoelectric and Mechanical Properties of Environmentally Friendly Mg
    Macario LR; Shi Y; Jafarzadeh P; Zou T; Kycia JB; Kleinke H
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45629-45635. PubMed ID: 31738048
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The potential thermoelectric material Tl
    Li B; Zhang C; Sun Z; Han T; Zhang X; Du J; Wang J; Xiao X; Wang N
    Phys Chem Chem Phys; 2022 Oct; 24(39):24447-24456. PubMed ID: 36190779
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recent Development of Thermoelectric Polymers and Composites.
    Yao H; Fan Z; Cheng H; Guan X; Wang C; Sun K; Ouyang J
    Macromol Rapid Commun; 2018 Mar; 39(6):e1700727. PubMed ID: 29356234
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phase Tuning for Enhancing the Thermoelectric Performance of Solution-Synthesized Cu
    Yang M; Liu X; Zhang B; Chen Y; Wang H; Yu J; Wang G; Xu J; Zhou X; Han G
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39541-39549. PubMed ID: 34384212
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Extraordinary Thermoelectric Performance Realized in n-Type PbTe through Multiphase Nanostructure Engineering.
    Zhang J; Wu D; He D; Feng D; Yin M; Qin X; He J
    Adv Mater; 2017 Oct; 29(39):. PubMed ID: 28833788
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fabrication of Bi–Sb–Te Thermoelectric by Cold-Pressed Sintering for Motorcycle Exhaust.
    Kao MJ; Chen MJ
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2550-553. PubMed ID: 29652124
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recent Progress in Thermoelectric Materials Based on Conjugated Polymers.
    Yao CJ; Zhang HL; Zhang Q
    Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960091
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhancing thermoelectric properties of organic composites through hierarchical nanostructures.
    Zhang K; Zhang Y; Wang S
    Sci Rep; 2013 Dec; 3():3448. PubMed ID: 24336319
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fabrication of Porous Polyvinylidene Fluoride/Multi-Walled Carbon Nanotube Nanocomposites and Their Enhanced Thermoelectric Performance.
    Du FP; Qiao X; Wu YG; Fu P; Liu SP; Zhang YF; Wang QY
    Polymers (Basel); 2018 Jul; 10(7):. PubMed ID: 30960722
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High Thermoelectric Performance in Two-Dimensional Janus Monolayer Material WS-X (
    Patel A; Singh D; Sonvane Y; Thakor PB; Ahuja R
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46212-46219. PubMed ID: 32931245
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Boosting the Thermoelectric Performance of the Doped DPP-EDOT Conjugated Polymer by Incorporating an Ionic Additive.
    Song Y; Dai X; Zou Y; Li C; Di CA; Zhang D; Zhu D
    Small; 2023 Jul; 19(29):e2300231. PubMed ID: 37026675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.