These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 30250850)
21. Haptoglobin genotype- and diabetes-dependent differences in iron-mediated oxidative stress in vitro and in vivo. Asleh R; Guetta J; Kalet-Litman S; Miller-Lotan R; Levy AP Circ Res; 2005 Mar; 96(4):435-41. PubMed ID: 15662028 [TBL] [Abstract][Full Text] [Related]
22. Proximal tubule haptoglobin gene activation is an integral component of the acute kidney injury "stress response". Zager RA; Vijayan A; Johnson AC Am J Physiol Renal Physiol; 2012 Jul; 303(1):F139-48. PubMed ID: 22573378 [TBL] [Abstract][Full Text] [Related]
23. [HAPTOGLOBIN POLYMORPHISM AS AN INDEPENDENT PREDICTOR OF DIABETIC NEPHROPATHY AND RETINOPATHY]. Dahan I; Thauho N; Nakhoul F; Nakhoul N; Jabaly H; Farber E Harefuah; 2016 Jul; 155(7):439-442. PubMed ID: 28514126 [TBL] [Abstract][Full Text] [Related]
24. The vitamin D receptor in the proximal renal tubule is a key regulator of serum 1α,25-dihydroxyvitamin D₃. Wang Y; Zhu J; DeLuca HF Am J Physiol Endocrinol Metab; 2015 Feb; 308(3):E201-5. PubMed ID: 25425001 [TBL] [Abstract][Full Text] [Related]
25. p53/microRNA-214/ULK1 axis impairs renal tubular autophagy in diabetic kidney disease. Ma Z; Li L; Livingston MJ; Zhang D; Mi Q; Zhang M; Ding HF; Huo Y; Mei C; Dong Z J Clin Invest; 2020 Sep; 130(9):5011-5026. PubMed ID: 32804155 [TBL] [Abstract][Full Text] [Related]
26. Hypothesis--haptoglobin genotype and diabetic nephropathy. Nakhoul FM; Miller-Lotan R; Awaad H; Asleh R; Levy AP Nat Clin Pract Nephrol; 2007 Jun; 3(6):339-44. PubMed ID: 17525716 [TBL] [Abstract][Full Text] [Related]
27. Upregulated IL-18 expression in type 2 diabetic subjects with nephropathy: TGF-beta1 enhanced IL-18 expression in human renal proximal tubular epithelial cells. Miyauchi K; Takiyama Y; Honjyo J; Tateno M; Haneda M Diabetes Res Clin Pract; 2009 Feb; 83(2):190-9. PubMed ID: 19110334 [TBL] [Abstract][Full Text] [Related]
28. Increased levels of adenosine and ecto 5'-nucleotidase (CD73) activity precede renal alterations in experimental diabetic rats. Oyarzún C; Salinas C; Gómez D; Jaramillo K; Pérez G; Alarcón S; Podestá L; Flores C; Quezada C; San Martín R Biochem Biophys Res Commun; 2015 Dec 4-11; 468(1-2):354-9. PubMed ID: 26499073 [TBL] [Abstract][Full Text] [Related]
30. Genetic deficiency of anti-aging gene klotho exacerbates early nephropathy in STZ-induced diabetes in male mice. Lin Y; Kuro-o M; Sun Z Endocrinology; 2013 Oct; 154(10):3855-63. PubMed ID: 23928372 [TBL] [Abstract][Full Text] [Related]
31. Decrease of FGF receptor (FGFR) and interstitial fibrosis in the kidney of streptozotocin-induced diabetic rats. Cheng MF; Chen LJ; Wang MC; Hsu CT; Cheng JT Horm Metab Res; 2014 Jan; 46(1):1-7. PubMed ID: 23828126 [TBL] [Abstract][Full Text] [Related]
32. Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy. Jheng HF; Tsai PJ; Chuang YL; Shen YT; Tai TA; Chen WC; Chou CK; Ho LC; Tang MJ; Lai KT; Sung JM; Tsai YS Dis Model Mech; 2015 Oct; 8(10):1311-21. PubMed ID: 26398934 [TBL] [Abstract][Full Text] [Related]
33. Altered expression and localization of insulin receptor in proximal tubule cells from human and rat diabetic kidney. Gatica R; Bertinat R; Silva P; Carpio D; Ramírez MJ; Slebe JC; San Martín R; Nualart F; Campistol JM; Caelles C; Yáñez AJ J Cell Biochem; 2013 Mar; 114(3):639-49. PubMed ID: 23059533 [TBL] [Abstract][Full Text] [Related]
34. Role of IGFBP7 in Diabetic Nephropathy: TGF-β1 Induces IGFBP7 via Smad2/4 in Human Renal Proximal Tubular Epithelial Cells. Watanabe J; Takiyama Y; Honjyo J; Makino Y; Fujita Y; Tateno M; Haneda M PLoS One; 2016; 11(3):e0150897. PubMed ID: 26974954 [TBL] [Abstract][Full Text] [Related]
35. Increased renal hypertrophy in diabetic mice genetically modified at the haptoglobin locus. Miller-Lotan R; Herskowitz Y; Kalet-Litman S; Nakhoul F; Aronson D; Zoabi R; Asaf R; Ben-Izhak O; Sabo E; Lim SK; Baumann H; Berger FG; Levy AP Diabetes Metab Res Rev; 2005; 21(4):332-7. PubMed ID: 15852445 [TBL] [Abstract][Full Text] [Related]
36. Role of Nampt-Sirt6 Axis in Renal Proximal Tubules in Extracellular Matrix Deposition in Diabetic Nephropathy. Muraoka H; Hasegawa K; Sakamaki Y; Minakuchi H; Kawaguchi T; Yasuda I; Kanda T; Tokuyama H; Wakino S; Itoh H Cell Rep; 2019 Apr; 27(1):199-212.e5. PubMed ID: 30943401 [TBL] [Abstract][Full Text] [Related]
37. Renal iron accelerates the progression of diabetic nephropathy in the HFE gene knockout mouse model of iron overload. Chaudhary K; Chilakala A; Ananth S; Mandala A; Veeranan-Karmegam R; Powell FL; Ganapathy V; Gnana-Prakasam JP Am J Physiol Renal Physiol; 2019 Aug; 317(2):F512-F517. PubMed ID: 31188032 [TBL] [Abstract][Full Text] [Related]
38. Haptoglobin attenuates hemoglobin-induced heme oxygenase-1 in renal proximal tubule cells and kidneys of a mouse model of sickle cell disease. Chintagari NR; Nguyen J; Belcher JD; Vercellotti GM; Alayash AI Blood Cells Mol Dis; 2015 Mar; 54(3):302-6. PubMed ID: 25582460 [TBL] [Abstract][Full Text] [Related]
39. Low-protein diet supplemented with ketoacids delays the progression of diabetic nephropathy by inhibiting oxidative stress in the KKAy mice model. Liu D; Wu M; Li L; Gao X; Yang B; Mei S; Fu L; Mei C Br J Nutr; 2018 Jan; 119(1):22-29. PubMed ID: 29208058 [TBL] [Abstract][Full Text] [Related]
40. The roles of sodium-glucose cotransporter 2 inhibitors in preventing kidney injury in diabetes. Jaikumkao K; Pongchaidecha A; Chatsudthipong V; Chattipakorn SC; Chattipakorn N; Lungkaphin A Biomed Pharmacother; 2017 Oct; 94():176-187. PubMed ID: 28759755 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]