These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 30251533)
1. Conductive and Tough Hydrogels Based on Biopolymer Molecular Templates for Controlling in Situ Formation of Polypyrrole Nanorods. Gan D; Han L; Wang M; Xing W; Xu T; Zhang H; Wang K; Fang L; Lu X ACS Appl Mater Interfaces; 2018 Oct; 10(42):36218-36228. PubMed ID: 30251533 [TBL] [Abstract][Full Text] [Related]
2. Highly conductive and tough polyacrylamide/sodium alginate hydrogel with uniformly distributed polypyrrole nanospheres for wearable strain sensors. Zhang Y; Li S; Gao Z; Bi D; Qu N; Huang S; Zhao X; Li R Carbohydr Polym; 2023 Sep; 315():120953. PubMed ID: 37230609 [TBL] [Abstract][Full Text] [Related]
3. Nanocellulose-Mediated Electroconductive Self-Healing Hydrogels with High Strength, Plasticity, Viscoelasticity, Stretchability, and Biocompatibility toward Multifunctional Applications. Ding Q; Xu X; Yue Y; Mei C; Huang C; Jiang S; Wu Q; Han J ACS Appl Mater Interfaces; 2018 Aug; 10(33):27987-28002. PubMed ID: 30043614 [TBL] [Abstract][Full Text] [Related]
4. Highly Conductive PPy-PEDOT:PSS Hybrid Hydrogel with Superior Biocompatibility for Bioelectronics Application. Ren X; Yang M; Yang T; Xu C; Ye Y; Wu X; Zheng X; Wang B; Wan Y; Luo Z ACS Appl Mater Interfaces; 2021 Jun; 13(21):25374-25382. PubMed ID: 34009925 [TBL] [Abstract][Full Text] [Related]
5. Nanocellulose-mediated transparent high strength conductive hydrogel based on in-situ formed polypyrrole nanofibrils as a multimodal sensor. Tie J; Chai H; Mao Z; Zhang L; Zhong Y; Sui X; Xu H Carbohydr Polym; 2021 Dec; 273():118600. PubMed ID: 34561000 [TBL] [Abstract][Full Text] [Related]
6. Microfibrillated cellulose enhancement to mechanical and conductive properties of biocompatible hydrogels. Lin F; Zheng R; Chen J; Su W; Dong B; Lin C; Huang B; Lu B Carbohydr Polym; 2019 Feb; 205():244-254. PubMed ID: 30446101 [TBL] [Abstract][Full Text] [Related]
7. A conductive sodium alginate and carboxymethyl chitosan hydrogel doped with polypyrrole for peripheral nerve regeneration. Bu Y; Xu HX; Li X; Xu WJ; Yin YX; Dai HL; Wang XB; Huang ZJ; Xu PH RSC Adv; 2018 Mar; 8(20):10806-10817. PubMed ID: 35541536 [TBL] [Abstract][Full Text] [Related]
8. Polypyrrole-incorporated conductive hyaluronic acid hydrogels. Yang J; Choe G; Yang S; Jo H; Lee JY Biomater Res; 2016; 20():31. PubMed ID: 27708859 [TBL] [Abstract][Full Text] [Related]
9. Tough, adhesive and conductive polysaccharide hydrogels mediated by ferric solution. Xu J; Jin R; Duan L; Ren X; Gao G Carbohydr Polym; 2019 May; 211():1-10. PubMed ID: 30824067 [TBL] [Abstract][Full Text] [Related]
10. Soft-Templated Synthesis of Lightweight, Elastic, and Conductive Nanotube Aerogels. Liang W; Rhodes S; Zheng J; Wang X; Fang J ACS Appl Mater Interfaces; 2018 Oct; 10(43):37426-37433. PubMed ID: 30289683 [TBL] [Abstract][Full Text] [Related]
11. Elastomeric conductive hybrid hydrogels with continuous conductive networks. Hu S; Zhou L; Tu L; Dai C; Fan L; Zhang K; Yao T; Chen J; Wang Z; Xing J; Fu R; Yu P; Tan G; Du J; Ning C J Mater Chem B; 2019 Apr; 7(15):2389-2397. PubMed ID: 32255117 [TBL] [Abstract][Full Text] [Related]
12. Self-assembly of polypyrrole/chitosan composite hydrogels. Huang H; Wu J; Lin X; Li L; Shang S; Yuen MC; Yan G Carbohydr Polym; 2013 Jun; 95(1):72-6. PubMed ID: 23618241 [TBL] [Abstract][Full Text] [Related]
13. A semi-interpenetrating network ionic composite hydrogel with low modulus, fast self-recoverability and high conductivity as flexible sensor. Ding H; Liang X; Wang Q; Wang M; Li Z; Sun G Carbohydr Polym; 2020 Nov; 248():116797. PubMed ID: 32919535 [TBL] [Abstract][Full Text] [Related]
14. Highly hemo-compatible, mechanically strong, and conductive dual cross-linked polymer hydrogels. Zhao W; Han Z; Ma L; Sun S; Zhao C J Mater Chem B; 2016 Dec; 4(48):8016-8024. PubMed ID: 32263791 [TBL] [Abstract][Full Text] [Related]
15. Flexible conductive silk-PPy hydrogel toward wearable electronic strain sensors. Han Y; Sun L; Wen C; Wang Z; Dai J; Shi L Biomed Mater; 2022 Feb; ():. PubMed ID: 35139506 [TBL] [Abstract][Full Text] [Related]
16. Tough and Conductive Hybrid Hydrogels Enabling Facile Patterning. Zhu F; Lin J; Wu ZL; Qu S; Yin J; Qian J; Zheng Q ACS Appl Mater Interfaces; 2018 Apr; 10(16):13685-13692. PubMed ID: 29608271 [TBL] [Abstract][Full Text] [Related]
17. Resilient and Tough Conductive Polymer Hydrogel for a Low-Hysteresis Strain Sensor. Cao C; Huang T; Li Y Macromol Rapid Commun; 2024 Jan; 45(2):e2300467. PubMed ID: 37863475 [TBL] [Abstract][Full Text] [Related]
18. Three-Dimensional Printed Hydrogels with High Elasticity, High Toughness, and Ionic Conductivity for Multifunctional Applications. Deng Z; Qian T; Hang F ACS Biomater Sci Eng; 2020 Dec; 6(12):7061-7070. PubMed ID: 33320594 [TBL] [Abstract][Full Text] [Related]
19. Chitosan-driven biocompatible hydrogel based on water-soluble polypyrrole for stable human-machine interfaces. Wang C; Zhang J; Xu H; Huang C; Lu Y; Cui H; Tan Y Carbohydr Polym; 2022 Nov; 295():119890. PubMed ID: 35989022 [TBL] [Abstract][Full Text] [Related]
20. Polypyrrole-doped conductive self-healing multifunctional composite hydrogels with a dual crosslinked network. Wang X; Li X; Zhao L; Li M; Li Y; Yang W; Ren J Soft Matter; 2021 Sep; 17(36):8363-8372. PubMed ID: 34550157 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]