These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 3025181)
1. Characterization of the specific pyruvate transport system in Escherichia coli K-12. Lang VJ; Leystra-Lantz C; Cook RA J Bacteriol; 1987 Jan; 169(1):380-5. PubMed ID: 3025181 [TBL] [Abstract][Full Text] [Related]
2. Transport of sugars and amino acids in bacteria. XV. Comparative studies on the effects of various energy poisons on the oxidative and phosphorylating activities and energy coupling reactions for the active transport systems for amino acids in E. coli. Anraku Y; Kin E; Tanaka Y J Biochem; 1975 Jul; 78(1):165-79. PubMed ID: 1104599 [TBL] [Abstract][Full Text] [Related]
3. Control of phosphoenolpyruvate-dependent phosphotransferase-mediated sugar transport in Escherichia coli by energization of the cell membrane. Reider E; Wagner EF; Schweiger M Proc Natl Acad Sci U S A; 1979 Nov; 76(11):5529-33. PubMed ID: 392504 [TBL] [Abstract][Full Text] [Related]
4. [Uncoupling expression of genes coding for the synthesis of proteins involved in transport and utilization of fructose in Escherichia coli K-12]. Bol'shakova TN; Molchanova ML; Erlagaeva RS; Grigorenko IuA; Gershanovich VN Genetika; 1991 Nov; 27(11):1912-9. PubMed ID: 1666389 [TBL] [Abstract][Full Text] [Related]
5. Stimulation of glucose catabolism in Escherichia coli by a potential futile cycle. Patnaik R; Roof WD; Young RF; Liao JC J Bacteriol; 1992 Dec; 174(23):7527-32. PubMed ID: 1332936 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the inhibition by stilbene disulphonates and phloretin of lactate and pyruvate transport into rat and guinea-pig cardiac myocytes suggests the presence of two kinetically distinct carriers in heart cells. Wang X; Poole RC; Halestrap AP; Levi AJ Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):249-58. PubMed ID: 8439293 [TBL] [Abstract][Full Text] [Related]
7. Active transport in Escherichia coli B membrane vesicles. Differential inactivating effects from the enzymatic oxidation of beta-chloro-L-alanine and beta-chloro-D-alanine. Kaczorowski G; Shaw L; Laura R; Walsh C J Biol Chem; 1975 Dec; 250(23):8921-30. PubMed ID: 1104610 [TBL] [Abstract][Full Text] [Related]
8. Respiration-coupled calcium transport by membrane vesicles from Azotobacter vinelandii. Barnes EM; Roberts RR; Bhattacharyya P Membr Biochem; 1978; 1(1-2):73-88. PubMed ID: 116111 [TBL] [Abstract][Full Text] [Related]
9. Comparison of the energetics of lactose active transport: artificial versus enzyme-associated energy source. Chen LI; Chen CH Arch Biochem Biophys; 1986 Dec; 251(2):606-15. PubMed ID: 3026249 [TBL] [Abstract][Full Text] [Related]
10. Sodium-stimulated glutamate uptake in membrane vesicles of Escherichia coli: the role of ion gradients. MacDonald RE; Lanyi JK; Greene RV Proc Natl Acad Sci U S A; 1977 Aug; 74(8):3167-70. PubMed ID: 20621 [TBL] [Abstract][Full Text] [Related]
11. Beta-galactoside transport in bacterial membrane preparations: energy coupling via membrane-bounded D-lactic dehydrogenase. Barnes EM; Kaback HR Proc Natl Acad Sci U S A; 1970 Aug; 66(4):1190-8. PubMed ID: 4394455 [TBL] [Abstract][Full Text] [Related]
12. Transport of pyruvate nad lactate into human erythrocytes. Evidence for the involvement of the chloride carrier and a chloride-independent carrier. Halestrap AP Biochem J; 1976 May; 156(2):193-207. PubMed ID: 942406 [TBL] [Abstract][Full Text] [Related]
13. Characterization of pyruvate uptake in Escherichia coli K-12. Kreth J; Lengeler JW; Jahreis K PLoS One; 2013; 8(6):e67125. PubMed ID: 23818977 [TBL] [Abstract][Full Text] [Related]
14. Sodium-dependent glutamate transport in membrane vesicles of Escherichia coli K-12. Kahane S; Marcus M; Barash H; Halpern YS FEBS Lett; 1975 Aug; 56(2):235-9. PubMed ID: 1098933 [No Abstract] [Full Text] [Related]
15. Determination of the absolute number of Escherichia coli membrane vesicles that catalyze active transport. Short SA; Kaback HR; Kaczorowski G; Fisher J; Walsh CT; Silverstein SC Proc Natl Acad Sci U S A; 1974 Dec; 71(12):5032-6. PubMed ID: 4612538 [TBL] [Abstract][Full Text] [Related]
16. Glutamate transport in membrane vesicles of the wild-type strain and glutamate-utilizing mutants of Escherichia coli. Kahane S; Marcus M; Metzer E; Halpern YS J Bacteriol; 1976 Mar; 125(3):770-5. PubMed ID: 767326 [TBL] [Abstract][Full Text] [Related]
17. Facilitated transport of calcium by cells and subcellular membranes of Bacillus subtilis and Escherichia coli. Silver S; Toth K; Scribner H J Bacteriol; 1975 Jun; 122(3):880-5. PubMed ID: 807559 [TBL] [Abstract][Full Text] [Related]
18. Transport of L-Lactate, D-Lactate, and glycolate by the LldP and GlcA membrane carriers of Escherichia coli. Núñez MF; Kwon O; Wilson TH; Aguilar J; Baldoma L; Lin EC Biochem Biophys Res Commun; 2002 Jan; 290(2):824-9. PubMed ID: 11785976 [TBL] [Abstract][Full Text] [Related]
19. Coupling of alanine racemase and D-alanine dehydrogenase to active transport of amino acids in Escherichia coli B membrane vesicles. Kaczorowski G; Shaw L; F-entes M; Walsh C J Biol Chem; 1975 Apr; 250(8):2855-65. PubMed ID: 1091641 [TBL] [Abstract][Full Text] [Related]
20. The inhibitory effect of the artificial electron donor system, phenazine methosulfate-ascorbate, on bacterial transport mechanisms. Eagon RG; Gitter BD; Rowe JJ J Supramol Struct; 1977; 7(1):49-59. PubMed ID: 415185 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]