These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 30251819)
41. Effect of Rubidium Incorporation on the Structural, Electrical, and Photovoltaic Properties of Methylammonium Lead Iodide-Based Perovskite Solar Cells. Park IJ; Seo S; Park MA; Lee S; Kim DH; Zhu K; Shin H; Kim JY ACS Appl Mater Interfaces; 2017 Dec; 9(48):41898-41905. PubMed ID: 29124921 [TBL] [Abstract][Full Text] [Related]
42. Amplified spontaneous emission in phenylethylammonium methylammonium lead iodide quasi-2D perovskites. Leyden MR; Matsushima T; Qin C; Ruan S; Ye H; Adachi C Phys Chem Chem Phys; 2018 Jun; 20(22):15030-15036. PubMed ID: 29789829 [TBL] [Abstract][Full Text] [Related]
43. Methylammonium Lead Bromide Perovskite Light-Emitting Diodes by Chemical Vapor Deposition. Leyden MR; Meng L; Jiang Y; Ono LK; Qiu L; Juarez-Perez EJ; Qin C; Adachi C; Qi Y J Phys Chem Lett; 2017 Jul; 8(14):3193-3198. PubMed ID: 28649837 [TBL] [Abstract][Full Text] [Related]
44. Improved Reproducibility and Intercalation Control of Efficient Planar Inorganic Perovskite Solar Cells by Simple Alternate Vacuum Deposition of PbI Shahiduzzaman M; Yonezawa K; Yamamoto K; Ripolles TS; Karakawa M; Kuwabara T; Takahashi K; Hayase S; Taima T ACS Omega; 2017 Aug; 2(8):4464-4469. PubMed ID: 31457738 [TBL] [Abstract][Full Text] [Related]
45. Dimensional Tailoring of Ultrahigh Vacuum Annealing-Assisted Quantum Wells for the Efficiency Enhancement of Perovskite Light-Emitting Diodes. Yu Y; Wang H; Xu W; Kuang C; Ji F; Braun S; Liu X; Yi C; Gao F; Fahlman M ACS Appl Mater Interfaces; 2020 Jun; 12(22):24965-24970. PubMed ID: 32394700 [TBL] [Abstract][Full Text] [Related]
46. Lewis Acid-Base Adduct Approach for High Efficiency Perovskite Solar Cells. Lee JW; Kim HS; Park NG Acc Chem Res; 2016 Feb; 49(2):311-9. PubMed ID: 26797391 [TBL] [Abstract][Full Text] [Related]
47. Making and Breaking of Lead Halide Perovskites. Manser JS; Saidaminov MI; Christians JA; Bakr OM; Kamat PV Acc Chem Res; 2016 Feb; 49(2):330-8. PubMed ID: 26789596 [TBL] [Abstract][Full Text] [Related]
48. Doped Manipulation of Photoluminescence and Carrier Lifetime from CH Ren L; Wang M; Wang S; Yan H; Zhang Z; Li M; Zhang Z; Jin K ACS Appl Mater Interfaces; 2019 May; 11(17):16174-16180. PubMed ID: 30950263 [TBL] [Abstract][Full Text] [Related]
49. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Cho H; Jeong SH; Park MH; Kim YH; Wolf C; Lee CL; Heo JH; Sadhanala A; Myoung N; Yoo S; Im SH; Friend RH; Lee TW Science; 2015 Dec; 350(6265):1222-5. PubMed ID: 26785482 [TBL] [Abstract][Full Text] [Related]
50. Identifying the Molecular Structures of Intermediates for Optimizing the Fabrication of High-Quality Perovskite Films. Cao J; Jing X; Yan J; Hu C; Chen R; Yin J; Li J; Zheng N J Am Chem Soc; 2016 Aug; 138(31):9919-26. PubMed ID: 27427774 [TBL] [Abstract][Full Text] [Related]
51. Vapor and healing treatment for CH3NH3PbI(3-x)Cl(x) films toward large-area perovskite solar cells. Gouda L; Gottesman R; Tirosh S; Haltzi E; Hu J; Ginsburg A; Keller DA; Bouhadana Y; Zaban A Nanoscale; 2016 Mar; 8(12):6386-92. PubMed ID: 26754034 [TBL] [Abstract][Full Text] [Related]
52. Competing Dissolution Pathways and Ligand Passivation-Enhanced Interfacial Stability of Hybrid Perovskites with Liquid Water. Zhou H; Wang J; Wang M; Lin S ACS Appl Mater Interfaces; 2020 May; 12(20):23584-23594. PubMed ID: 32326693 [TBL] [Abstract][Full Text] [Related]
53. Bright Perovskite Nanocrystal Films for Efficient Light-Emitting Devices. Zhang X; Sun C; Zhang Y; Wu H; Ji C; Chuai Y; Wang P; Wen S; Zhang C; Yu WW J Phys Chem Lett; 2016 Nov; 7(22):4602-4610. PubMed ID: 27758105 [TBL] [Abstract][Full Text] [Related]
54. Multisource Vacuum Deposition of Methylammonium-Free Perovskite Solar Cells. Chiang YH; Anaya M; Stranks SD ACS Energy Lett; 2020 Aug; 5(8):2498-2504. PubMed ID: 32832697 [TBL] [Abstract][Full Text] [Related]
55. Effect of Precursor Stoichiometry on the Performance and Stability of MAPbBr Falk LM; Goetz KP; Lami V; An Q; Fassl P; Herkel J; Thome F; Taylor AD; Paulus F; Vaynzof Y Energy Technol (Weinh); 2020 Apr; 8(4):1900737. PubMed ID: 32363134 [TBL] [Abstract][Full Text] [Related]
57. Probing the Degradation Chemistry and Enhanced Stability of 2D Organolead Halide Perovskites. Wygant BR; Ye AZ; Dolocan A; Vu Q; Abbot DM; Mullins CB J Am Chem Soc; 2019 Nov; 141(45):18170-18181. PubMed ID: 31630513 [TBL] [Abstract][Full Text] [Related]
58. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Chen Q; Zhou H; Song TB; Luo S; Hong Z; Duan HS; Dou L; Liu Y; Yang Y Nano Lett; 2014 Jul; 14(7):4158-63. PubMed ID: 24960309 [TBL] [Abstract][Full Text] [Related]
59. Trap states in lead iodide perovskites. Wu X; Trinh MT; Niesner D; Zhu H; Norman Z; Owen JS; Yaffe O; Kudisch BJ; Zhu XY J Am Chem Soc; 2015 Feb; 137(5):2089-96. PubMed ID: 25602495 [TBL] [Abstract][Full Text] [Related]
60. Facet-Dependent Property of Sequentially Deposited Perovskite Thin Films: Chemical Origin and Self-Annihilation. Zhang T; Long M; Yan K; Zeng X; Zhou F; Chen Z; Wan X; Chen K; Liu P; Li F; Yu T; Xie W; Xu J ACS Appl Mater Interfaces; 2016 Nov; 8(47):32366-32375. PubMed ID: 27933852 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]