These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 30251962)

  • 1. Multimodal atomic force microscopy with optimized higher eigenmode sensitivity using on-chip piezoelectric actuation and sensing.
    Ruppert MG; Moore SI; Zawierta M; Fleming AJ; Putrino G; Yong YK
    Nanotechnology; 2019 Feb; 30(8):085503. PubMed ID: 30251962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multimodal cantilevers with novel piezoelectric layer topology for sensitivity enhancement.
    Moore SI; Ruppert MG; Yong YK
    Beilstein J Nanotechnol; 2017; 8():358-371. PubMed ID: 28326225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-bandwidth multimode self-sensing in bimodal atomic force microscopy.
    Ruppert MG; Moheimani SO
    Beilstein J Nanotechnol; 2016; 7():284-95. PubMed ID: 26977385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Note: Guaranteed collocated multimode control of an atomic force microscope cantilever using on-chip piezoelectric actuation and sensing.
    Ruppert MG; Yong YK
    Rev Sci Instrum; 2017 Aug; 88(8):086109. PubMed ID: 28863678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High resolution atomic force microscopy with an active piezoelectric microcantilever.
    Mahmoodi Nasrabadi H; Mahdavi M; Soleymaniha M; Moheimani SOR
    Rev Sci Instrum; 2022 Jul; 93(7):073706. PubMed ID: 35922324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modular apparatus for electrostatic actuation of common atomic force microscope cantilevers.
    Long CJ; Cannara RJ
    Rev Sci Instrum; 2015 Jul; 86(7):073703. PubMed ID: 26233392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-speed dynamic atomic force microscopy by using a Q-controlled cantilever eigenmode as an actuator.
    Balantekin M
    Ultramicroscopy; 2015 Feb; 149():45-50. PubMed ID: 25436928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and optimization of in-plane actuator driven cantilever with high sensitivity sensors.
    Chen X; Lee DW
    J Nanosci Nanotechnol; 2010 May; 10(5):3236-40. PubMed ID: 20358930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple regimes of operation in bimodal AFM: understanding the energy of cantilever eigenmodes.
    Kiracofe D; Raman A; Yablon D
    Beilstein J Nanotechnol; 2013; 4():385-93. PubMed ID: 23844344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of V-shaped cantilevers for enhanced multifrequency AFM measurements.
    Damircheli M; Eslami B
    Beilstein J Nanotechnol; 2020; 11():1525-1541. PubMed ID: 33094086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving tapping mode atomic force microscopy with piezoelectric cantilevers.
    Rogers B; Manning L; Sulchek T; Adams JD
    Ultramicroscopy; 2004 Aug; 100(3-4):267-76. PubMed ID: 15231319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the optical lever sensitivity of microcantilevers for dynamic atomic force microscopy via integrated low frequency paddles.
    Shaik NH; Reifenberger RG; Raman A
    Nanotechnology; 2016 May; 27(19):195502. PubMed ID: 27040811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actuation of atomic force microscopy microcantilevers using contact acoustic nonlinearities.
    Torello D; Degertekin FL
    Rev Sci Instrum; 2013 Nov; 84(11):113705. PubMed ID: 24289402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Atomic Force Microscope with Dual Actuation Capability for Biomolecular Experiments.
    Sevim S; Shamsudhin N; Ozer S; Feng L; Fakhraee A; Ergeneman O; Pané S; Nelson BJ; Torun H
    Sci Rep; 2016 Jun; 6():27567. PubMed ID: 27273214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-zero contact force atomic force microscopy investigations using active electromagnetic cantilevers.
    Świadkowski B; Majstrzyk W; Kunicki P; Sierakowski A; Gotszalk T
    Nanotechnology; 2020 Jul; 31(42):. PubMed ID: 32599567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of cantilevers' dimensions on phase contrast in multifrequency atomic force microscopy.
    Ehsanipour M; Damircheli M; Eslami B
    Microsc Res Tech; 2019 Sep; 82(9):1438-1447. PubMed ID: 31106947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel self-sensing technique for tapping-mode atomic force microscopy.
    Ruppert MG; Moheimani SO
    Rev Sci Instrum; 2013 Dec; 84(12):125006. PubMed ID: 24387461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-speed tapping-mode atomic force microscopy using a Q-controlled regular cantilever acting as the actuator: proof-of-principle experiments.
    Balantekin M; Satır S; Torello D; Değertekin FL
    Rev Sci Instrum; 2014 Dec; 85(12):123705. PubMed ID: 25554299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of self-actuating and self-sensing cantilevers for imaging biological samples in fluid.
    Fantner GE; Schumann W; Barbero RJ; Deutschinger A; Todorov V; Gray DS; Belcher AM; Rangelow IW; Youcef-Toumi K
    Nanotechnology; 2009 Oct; 20(43):434003. PubMed ID: 19801750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic force microscopy with integrated on-chip interferometric readout.
    Zawierta M; Jeffery RD; Putrino G; Silva KKMBD; Keating A; Martyniuk M; Faraone L
    Ultramicroscopy; 2019 Oct; 205():75-83. PubMed ID: 31247456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.