These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 30251963)

  • 1. Water desorption in Kelvin-probe force microscopy: a generic model.
    Mesquida P; Kohl D; Bansode S; Duer M; Schitter G
    Nanotechnology; 2018 Dec; 29(50):505705. PubMed ID: 30251963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AFM-Based Characterization of Electrical Properties of Materials.
    Alexander J; Belikov S; Magonov S
    Methods Mol Biol; 2018; 1814():99-127. PubMed ID: 29956229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical simulations for a quantitative analysis of AFM electrostatic nanopatterning on PMMA by Kelvin force microscopy.
    Palleau E; Ressier L; Borowik Ł; Mélin T
    Nanotechnology; 2010 Jun; 21(22):225706. PubMed ID: 20453285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of electrostatic tip-sample interactions by time-domain Kelvin probe force microscopy.
    Ritz C; Wagner T; Stemmer A
    Beilstein J Nanotechnol; 2020; 11():911-921. PubMed ID: 32596095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tip-to-sample distance dependence of an electrostatic force in KFM measurements.
    Takahashi T; Ono S
    Ultramicroscopy; 2004 Aug; 100(3-4):287-92. PubMed ID: 15231321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AFM force mapping for characterizing patterns of electrostatic charges on SiO2 electrets.
    Zhang Y; Zhao D; Tan X; Cao T; Zhang X
    Langmuir; 2010 Jul; 26(14):11958-62. PubMed ID: 20476727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic nanopatterning of PMMA by AFM charge writing for directed nano-assembly.
    Ressier L; Le Nader V
    Nanotechnology; 2008 Apr; 19(13):135301. PubMed ID: 19636140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High resolution atomic force and Kelvin probe force microscopy image data of InAs(001) surface using frequency modulation method.
    Park YM; Park JS; Chung CH; Lee S
    Data Brief; 2020 Apr; 29():105177. PubMed ID: 32055662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ characterization of nanoscale contaminations adsorbed in air using atomic force microscopy.
    Lacasa JS; Almonte L; Colchero J
    Beilstein J Nanotechnol; 2018; 9():2925-2935. PubMed ID: 30546989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling electrostatic charging of nanocrystalline diamond at nanoscale.
    Verveniotis E; Kromka A; Rezek B
    Langmuir; 2013 Jun; 29(23):7111-7. PubMed ID: 23679138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced atomic force microscopy-based techniques for nanoscale characterization of switching devices for emerging neuromorphic applications.
    Kim YM; Lee J; Jeon DJ; Oh SE; Yeo JS
    Appl Microsc; 2021 May; 51(1):7. PubMed ID: 34037869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of nanoparticles and nanosystems in biological matrices with scanning probe microscopy.
    Angeloni L; Reggente M; Passeri D; Natali M; Rossi M
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2018 Nov; 10(6):e1521. PubMed ID: 29665287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale characterization of the dielectric charging phenomenon in PECVD silicon nitride thin films with various interfacial structures based on Kelvin probe force microscopy.
    Zaghloul U; Papaioannou GJ; Wang H; Bhushan B; Coccetti F; Pons P; Plana R
    Nanotechnology; 2011 May; 22(20):205708. PubMed ID: 21444948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lab on a tip: Applications of functional atomic force microscopy for the study of electrical properties in biology.
    Cheong LZ; Zhao W; Song S; Shen C
    Acta Biomater; 2019 Nov; 99():33-52. PubMed ID: 31425893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulsed Force Kelvin Probe Force Microscopy.
    Jakob DS; Wang H; Xu XG
    ACS Nano; 2020 Apr; 14(4):4839-4848. PubMed ID: 32283008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices.
    Gysin U; Glatzel T; Schmölzer T; Schöner A; Reshanov S; Bartolf H; Meyer E
    Beilstein J Nanotechnol; 2015; 6():2485-97. PubMed ID: 26885461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifrequency atomic force microscopy: compositional imaging with electrostatic force measurements.
    Magonov S; Alexander J
    Microsc Microanal; 2011 Aug; 17(4):587-97. PubMed ID: 21771386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breaking the Time Barrier in Kelvin Probe Force Microscopy: Fast Free Force Reconstruction Using the G-Mode Platform.
    Collins L; Ahmadi M; Wu T; Hu B; Kalinin SV; Jesse S
    ACS Nano; 2017 Sep; 11(9):8717-8729. PubMed ID: 28780850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring local electrostatic effects with scanning probe microscopy: implications for piezoresponse force microscopy and triboelectricity.
    Balke N; Maksymovych P; Jesse S; Kravchenko II; Li Q; Kalinin SV
    ACS Nano; 2014 Oct; 8(10):10229-36. PubMed ID: 25257028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-pass Kelvin force microscopy and dC/dZ measurements in the intermittent contact: applications to polymer materials.
    Magonov S; Alexander J
    Beilstein J Nanotechnol; 2011; 2():15-27. PubMed ID: 21977411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.