These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3025198)

  • 1. Calcium and the phosphoinositide cycle in WRK-1 cells. Effects of A23187 on metabolism of specific phosphatidylinositol pools.
    Monaco ME
    J Biol Chem; 1987 Jan; 262(1):147-51. PubMed ID: 3025198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship of hormone-sensitive and hormone-insensitive phosphatidylinositol to phosphatidylinositol 4,5-bisphosphate in the WRK-1 cell.
    Koréh K; Monaco ME
    J Biol Chem; 1986 Jan; 261(1):88-91. PubMed ID: 3001064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inositol metabolism in WRK-1 cells. Relationship of hormone-sensitive to -insensitive pools of phosphoinositides.
    Monaco ME
    J Biol Chem; 1987 Sep; 262(27):13001-6. PubMed ID: 2820960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The phosphatidylinositol cycle in WRK-1 cells. Evidence for a separate, hormone-sensitive phosphatidylinositol pool.
    Monaco ME
    J Biol Chem; 1982 Mar; 257(5):2137-9. PubMed ID: 7037762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation, by vasopressin and other agonists, of inositol-lipid breakdown and inositol phosphate accumulation in WRK 1 cells.
    Kirk CJ; Guillon G; Balestre MN; Jard S
    Biochem J; 1986 Nov; 240(1):197-204. PubMed ID: 3827839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of dual agonists on phosphoinositide pools in WRK-1 cells.
    Monaco ME; Attinasi M; Koréh K
    Biochem J; 1990 Aug; 269(3):633-7. PubMed ID: 2167661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the hormone-sensitive phosphatidylinositol pool in WRK-1 cells.
    Monaco ME; Woods D
    J Biol Chem; 1983 Dec; 258(24):15125-9. PubMed ID: 6654910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phorbol ester inhibition of the hormone-stimulated phosphoinositide cycle in WRK-1 cells.
    Monaco ME; Mufson RA
    Biochem J; 1986 May; 236(1):171-5. PubMed ID: 3790069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethanol-induced mobilization of calcium by activation of phosphoinositide-specific phospholipase C in intact hepatocytes.
    Hoek JB; Thomas AP; Rubin R; Rubin E
    J Biol Chem; 1987 Jan; 262(2):682-91. PubMed ID: 3027063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphatidylinositol metabolism in rat hepatocytes stimulated by glycogenolytic hormones. Effects of angiotensin, vasopressin, adrenaline, ionophore A23187 and calcium-ion deprivation.
    Billah MM; Michell RH
    Biochem J; 1979 Sep; 182(3):661-8. PubMed ID: 229824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new model system for studying the phosphatidylinositol cycle.
    Monaco ME; Lippman ME
    J Cell Physiol; 1982 Jul; 112(1):148-53. PubMed ID: 7050132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maitotoxin: effects on calcium channels, phosphoinositide breakdown, and arachidonate release in pheochromocytoma PC12 cells.
    Choi OH; Padgett WL; Nishizawa Y; Gusovsky F; Yasumoto T; Daly JW
    Mol Pharmacol; 1990 Feb; 37(2):222-30. PubMed ID: 2154671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization of the receptor-mediated phosphoinositide cycle: relationship between receptor occupancy and accession of phosphatidylinositol.
    Monaco ME; Moldover NH
    J Cell Biochem; 1997 Mar; 64(3):382-9. PubMed ID: 9057096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of polyphosphoinositides and their breakdown products in A23187-induced release of arachidonic acid from rabbit polymorphonuclear leucocytes.
    Meade CJ; Turner GA; Bateman PE
    Biochem J; 1986 Sep; 238(2):425-36. PubMed ID: 3026352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbachol causes rapid phosphodiesteratic cleavage of phosphatidylinositol 4,5-bisphosphate and accumulation of inositol phosphates in rabbit iris smooth muscle; prazosin inhibits noradrenaline- and ionophore A23187-stimulated accumulation of inositol phosphates.
    Akhtar RA; Abdel-Latif AA
    Biochem J; 1984 Nov; 224(1):291-300. PubMed ID: 6095818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of calcium uptake and phosphatidylinositol turnover by epidermal growth factor in A-431 cells.
    Sawyer ST; Cohen S
    Biochemistry; 1981 Oct; 20(21):6280-6. PubMed ID: 6272837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential activation of phosphatidylinositol deacylation and a pathway via diphosphoinositide in macrophages responding to zymosan and ionophore A23187.
    Emilsson A; Sundler R
    J Biol Chem; 1984 Mar; 259(5):3111-6. PubMed ID: 6321496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of unsaturated fatty acids and Ca2+ on phosphatidylinositol synthesis and breakdown.
    Takenawa T; Nagai Y
    J Biochem; 1982 Mar; 91(3):793-9. PubMed ID: 6281246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thyrotropin-releasing hormone rapidly activates the phosphodiester hydrolysis of polyphosphoinositides in GH3 pituitary cells. Evidence for the role of a polyphosphoinositide-specific phospholipase C in hormone action.
    Martin TF
    J Biol Chem; 1983 Dec; 258(24):14816-22. PubMed ID: 6317674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gonadotropin-releasing hormone activates a rapid Ca2+-independent phosphodiester hydrolysis of polyphosphoinositides in pituitary gonadotrophs.
    Naor Z; Azrad A; Limor R; Zakut H; Lotan M
    J Biol Chem; 1986 Sep; 261(27):12506-12. PubMed ID: 3017978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.