BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 30252775)

  • 1. Dynamic Cerebral Autoregulation Is Maintained during High-Intensity Interval Exercise.
    Tsukamoto H; Hashimoto T; Olesen ND; Petersen LG; Sørensen H; Nielsen HB; Secher NH; Ogoh S
    Med Sci Sports Exerc; 2019 Feb; 51(2):372-378. PubMed ID: 30252775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lower dynamic cerebral autoregulation following acute bout of low-volume high-intensity interval exercise in chronic stroke compared to healthy adults.
    Whitaker AA; Aaron SE; Chertoff M; Brassard P; Buchanan J; Nguyen K; Vidoni ED; Waghmare S; Eickmeyer SM; Montgomery RN; Billinger SA
    J Appl Physiol (1985); 2024 Apr; 136(4):707-720. PubMed ID: 38357728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attenuated pulsatile transition to the cerebral vasculature during high-intensity interval exercise in young healthy men.
    Sugawara J; Hashimoto T; Tsukamoto H; Secher NH; Ogoh S
    Exp Physiol; 2023 Aug; 108(8):1057-1065. PubMed ID: 37309084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MCA Vmean and the arterial lactate-to-pyruvate ratio correlate during rhythmic handgrip.
    Rasmussen P; Plomgaard P; Krogh-Madsen R; Kim YS; van Lieshout JJ; Secher NH; Quistorff B
    J Appl Physiol (1985); 2006 Nov; 101(5):1406-11. PubMed ID: 16794025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcranial Doppler ultrasound for cerebral perfusion.
    Jørgensen LG
    Acta Physiol Scand Suppl; 1995; 625():1-44. PubMed ID: 7484167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral hemodynamics and resistance exercise.
    Edwards MR; Martin DH; Hughson RL
    Med Sci Sports Exerc; 2002 Jul; 34(7):1207-11. PubMed ID: 12131264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circulating Plasma Oxytocin Level Is Elevated by High-Intensity Interval Exercise in Men.
    Tsukamoto H; Olesen ND; Petersen LG; Suga T; Sørensen H; Nielsen HB; Ogoh S; Secher NH; Hashimoto T
    Med Sci Sports Exerc; 2024 May; 56(5):927-932. PubMed ID: 38115226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of high intensity interval exercise on cerebrovascular function: A systematic review.
    Whitaker AA; Alwatban M; Freemyer A; Perales-Puchalt J; Billinger SA
    PLoS One; 2020; 15(10):e0241248. PubMed ID: 33119691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic cerebral autoregulation across the cardiac cycle during 8 hr of recovery from acute exercise.
    Burma JS; Copeland P; Macaulay A; Khatra O; Wright AD; Smirl JD
    Physiol Rep; 2020 Mar; 8(5):e14367. PubMed ID: 32163235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of middle cerebral artery blood velocity during recovery from dynamic exercise in humans.
    Ogoh S; Fisher JP; Purkayastha S; Dawson EA; Fadel PJ; White MJ; Zhang R; Secher NH; Raven PB
    J Appl Physiol (1985); 2007 Feb; 102(2):713-21. PubMed ID: 17068217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic blood pressure control and middle cerebral artery mean blood velocity variability at rest and during exercise in humans.
    Ogoh S; Dalsgaard MK; Secher NH; Raven PB
    Acta Physiol (Oxf); 2007 Sep; 191(1):3-14. PubMed ID: 17506866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracranial Vascular Responses to High-Intensity Interval Exercise and Moderate-Intensity Steady-State Exercise in Children.
    Tallon CM; Simair RG; Koziol AV; Ainslie PN; McManus AM
    Pediatr Exerc Sci; 2019 Aug; 31(3):290-295. PubMed ID: 30832540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebral perfusion, cardiac output, and arterial pressure in patients with fulminant hepatic failure.
    Larsen FS; Strauss G; Knudsen GM; Herzog TM; Hansen BA; Secher NH
    Crit Care Med; 2000 Apr; 28(4):996-1000. PubMed ID: 10809272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-intensity interval exercise attenuates but does not eliminate endothelial dysfunction after a fast food meal.
    Tucker WJ; Sawyer BJ; Jarrett CL; Bhammar DM; Ryder JR; Angadi SS; Gaesser GA
    Am J Physiol Heart Circ Physiol; 2018 Feb; 314(2):H188-H194. PubMed ID: 29101171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential responses to sympathetic stimulation in the cerebral and brachial circulations during rhythmic handgrip exercise in humans.
    Hartwich D; Fowler KL; Wynn LJ; Fisher JP
    Exp Physiol; 2010 Nov; 95(11):1089-97. PubMed ID: 20851860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebral Blood Flow during Interval and Continuous Exercise in Young and Old Men.
    Klein T; Bailey TG; Abeln V; Schneider S; Askew CD
    Med Sci Sports Exerc; 2019 Jul; 51(7):1523-1531. PubMed ID: 30768552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Middle cerebral artery flow velocity and pulse pressure during dynamic exercise in humans.
    Ogoh S; Fadel PJ; Zhang R; Selmer C; Jans Ø; Secher NH; Raven PB
    Am J Physiol Heart Circ Physiol; 2005 Apr; 288(4):H1526-31. PubMed ID: 15591094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lower middle cerebral artery blood velocity during low-volume high-intensity interval exercise in chronic stroke.
    Whitaker AA; Waghmare S; Montgomery RN; Aaron SE; Eickmeyer SM; Vidoni ED; Billinger SA
    J Cereb Blood Flow Metab; 2024 May; 44(5):627-640. PubMed ID: 37708242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic cerebral autoregulation during exhaustive exercise in humans.
    Ogoh S; Dalsgaard MK; Yoshiga CC; Dawson EA; Keller DM; Raven PB; Secher NH
    Am J Physiol Heart Circ Physiol; 2005 Mar; 288(3):H1461-7. PubMed ID: 15498819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endotoxemia reduces cerebral perfusion but enhances dynamic cerebrovascular autoregulation at reduced arterial carbon dioxide tension.
    Brassard P; Kim YS; van Lieshout J; Secher NH; Rosenmeier JB
    Crit Care Med; 2012 Jun; 40(6):1873-8. PubMed ID: 22610190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.