BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 30252940)

  • 1. Two-stage carbon distribution and cofactor generation for improving l-threonine production of Escherichia coli.
    Liu J; Li H; Xiong H; Xie X; Chen N; Zhao G; Caiyin Q; Zhu H; Qiao J
    Biotechnol Bioeng; 2019 Jan; 116(1):110-120. PubMed ID: 30252940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate L-pipecolic acid in Escherichia coli.
    Ying H; Tao S; Wang J; Ma W; Chen K; Wang X; Ouyang P
    Microb Cell Fact; 2017 Mar; 16(1):52. PubMed ID: 28347340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-regulated efficient production of L-threonine via an artificial quorum sensing system in engineered Escherichia coli.
    Song J; Zhuang M; Fang Y; Hu X; Wang X
    Microbiol Res; 2024 Jul; 284():127720. PubMed ID: 38640767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Escherichia coli for poly(3-hydroxybutyrate) production via threonine bypass.
    Lin Z; Zhang Y; Yuan Q; Liu Q; Li Y; Wang Z; Ma H; Chen T; Zhao X
    Microb Cell Fact; 2015 Nov; 14():185. PubMed ID: 26589676
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Im DK; Hong J; Gu B; Sung C; Oh MK
    Biotechnol J; 2020 Jun; 15(6):e1900346. PubMed ID: 32319741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD(+)-dependent formate dehydrogenase.
    Balzer GJ; Thakker C; Bennett GN; San KY
    Metab Eng; 2013 Nov; 20():1-8. PubMed ID: 23876411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple strategies for metabolic engineering of Escherichia coli for efficient production of glycolate.
    Zhu T; Yao D; Li D; Xu H; Jia S; Bi C; Cai J; Zhu X; Zhang X
    Biotechnol Bioeng; 2021 Dec; 118(12):4699-4707. PubMed ID: 34491579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rebalancing microbial carbon distribution for L-threonine maximization using a thermal switch system.
    Fang Y; Wang J; Ma W; Yang J; Zhang H; Zhao L; Chen S; Zhang S; Hu X; Li Y; Wang X
    Metab Eng; 2020 Sep; 61():33-46. PubMed ID: 32371091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial modulation and cofactor engineering of key pathway enzymes for fumarate production in Candida glabrata.
    Chen X; Li Y; Tong T; Liu L
    Biotechnol Bioeng; 2019 Mar; 116(3):622-630. PubMed ID: 30582631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of isopropyl alcohol-producing Escherichia coli strains with
    Okahashi N; Matsuda F; Yoshikawa K; Shirai T; Matsumoto Y; Wada M; Shimizu H
    Biotechnol Bioeng; 2017 Dec; 114(12):2782-2793. PubMed ID: 28755490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Escherichia coli for the production of fumaric acid.
    Song CW; Kim DI; Choi S; Jang JW; Lee SY
    Biotechnol Bioeng; 2013 Jul; 110(7):2025-34. PubMed ID: 23436277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining rational metabolic engineering and flux optimization strategies for efficient production of fumaric acid.
    Song CW; Lee SY
    Appl Microbiol Biotechnol; 2015 Oct; 99(20):8455-64. PubMed ID: 26194559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Engineering of Escherichia coli for Efficient Production of 2-Pyrone-4,6-dicarboxylic Acid from Glucose.
    Luo ZW; Kim WJ; Lee SY
    ACS Synth Biol; 2018 Sep; 7(9):2296-2307. PubMed ID: 30096230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of threonine catabolism enables Saccharomyces cerevisiae to produce propionate under aerobic conditions.
    Ding W; Meng Q; Dong G; Qi N; Zhao H; Shi S
    Biotechnol J; 2022 Mar; 17(3):e2100579. PubMed ID: 35086163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Metabolic Engineering Strategies on 2-Ketoisovalerate Production by Escherichia coli.
    Zhou L; Zhu Y; Yuan Z; Liu G; Sun Z; Du S; Liu H; Li Y; Liu H; Zhou Z
    Appl Environ Microbiol; 2022 Sep; 88(17):e0097622. PubMed ID: 35980178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly efficient production of L-homoserine in Escherichia coli by engineering a redox balance route.
    Mu Q; Zhang S; Mao X; Tao Y; Yu B
    Metab Eng; 2021 Sep; 67():321-329. PubMed ID: 34329706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flux redistribution of central carbon metabolism for efficient production of l-tryptophan in Escherichia coli.
    Xiong B; Zhu Y; Tian D; Jiang S; Fan X; Ma Q; Wu H; Xie X
    Biotechnol Bioeng; 2021 Mar; 118(3):1393-1404. PubMed ID: 33399214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis.
    He L; Xiao Y; Gebreselassie N; Zhang F; Antoniewiez MR; Tang YJ; Peng L
    Biotechnol Bioeng; 2014 Mar; 111(3):575-85. PubMed ID: 24122357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in Metabolic Engineering for the Biosynthesis of Phosphoenol Pyruvate-Oxaloacetate-Pyruvate-Derived Amino Acids.
    Yin L; Zhou Y; Ding N; Fang Y
    Molecules; 2024 Jun; 29(12):. PubMed ID: 38930958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.