BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 30252940)

  • 21. Pathway construction and metabolic engineering for fermentative production of ectoine in Escherichia coli.
    Ning Y; Wu X; Zhang C; Xu Q; Chen N; Xie X
    Metab Eng; 2016 Jul; 36():10-18. PubMed ID: 26969253
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel strategy for L-arginine production in engineered Escherichia coli.
    Nie M; Wang J; Zhang K
    Microb Cell Fact; 2023 Jul; 22(1):138. PubMed ID: 37495979
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial metabolic engineering for L-threonine production.
    Dong X; Quinn PJ; Wang X
    Subcell Biochem; 2012; 64():283-302. PubMed ID: 23080256
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic engineering of Escherichia coli and in silico comparing of carboxylation pathways for high succinate productivity under aerobic conditions.
    Yang J; Wang Z; Zhu N; Wang B; Chen T; Zhao X
    Microbiol Res; 2014; 169(5-6):432-40. PubMed ID: 24103861
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fermentative production of the unnatural amino acid L-2-aminobutyric acid based on metabolic engineering.
    Xu JM; Li JQ; Zhang B; Liu ZQ; Zheng YG
    Microb Cell Fact; 2019 Feb; 18(1):43. PubMed ID: 30819198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving the production of isoprene and 1,3-propanediol by metabolically engineered Escherichia coli through recycling redox cofactor between the dual pathways.
    Guo J; Cao Y; Liu H; Zhang R; Xian M; Liu H
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2597-2608. PubMed ID: 30719552
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving methyl ketone production in Escherichia coli by heterologous expression of NADH-dependent FabG.
    Goh EB; Chen Y; Petzold CJ; Keasling JD; Beller HR
    Biotechnol Bioeng; 2018 May; 115(5):1161-1172. PubMed ID: 29411856
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic engineering of Escherichia coli for L-malate production anaerobically.
    Jiang Y; Zheng T; Ye X; Xin F; Zhang W; Dong W; Ma J; Jiang M
    Microb Cell Fact; 2020 Aug; 19(1):165. PubMed ID: 32811486
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modification of glycolysis and its effect on the production of L-threonine in Escherichia coli.
    Xie X; Liang Y; Liu H; Liu Y; Xu Q; Zhang C; Chen N
    J Ind Microbiol Biotechnol; 2014 Jun; 41(6):1007-15. PubMed ID: 24671569
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiplex Design of the Metabolic Network for Production of l-Homoserine in Escherichia coli.
    Liu P; Zhang B; Yao ZH; Liu ZQ; Zheng YG
    Appl Environ Microbiol; 2020 Oct; 86(20):. PubMed ID: 32801175
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activation of alternative metabolic pathways diverts carbon flux away from isobutanol formation in an engineered Escherichia coli strain.
    Deb SS; Reshamwala SMS; Lali AM
    Biotechnol Lett; 2019 Jul; 41(6-7):823-836. PubMed ID: 31093837
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reconstruction of tricarboxylic acid cycle in Corynebacterium glutamicum with a genome-scale metabolic network model for trans-4-hydroxyproline production.
    Zhang Y; Zhang Y; Shang X; Wang B; Hu Q; Liu S; Wen T
    Biotechnol Bioeng; 2019 Jan; 116(1):99-109. PubMed ID: 30102770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose with elevated 3-hydroxyvalerate fraction via combined citramalate and threonine pathway in Escherichia coli.
    Wang Q; Liu X; Qi Q
    Appl Microbiol Biotechnol; 2014 May; 98(9):3923-31. PubMed ID: 24425304
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increasing Agmatine Production in
    Xu D; Zhang L
    J Agric Food Chem; 2019 Jul; 67(28):7908-7915. PubMed ID: 31268314
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Equilibrium of the intracellular redox state for improving cell growth and L-lysine yield of Corynebacterium glutamicum by optimal cofactor swapping.
    Xu JZ; Ruan HZ; Chen XL; Zhang F; Zhang W
    Microb Cell Fact; 2019 Apr; 18(1):65. PubMed ID: 30943966
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.
    Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S
    BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of Dynamic Regulation to Increase L-Phenylalanine Production in
    Wu J; Liu Y; Zhao S; Sun J; Jin Z; Zhang D
    J Microbiol Biotechnol; 2019 Jun; 29(6):923-932. PubMed ID: 31154747
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering Escherichia coli for the utilization of ethylene glycol.
    Pandit AV; Harrison E; Mahadevan R
    Microb Cell Fact; 2021 Jan; 20(1):22. PubMed ID: 33482812
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pathway engineering of
    Fan X; Zhang T; Ji Y; Li J; Long K; Yuan Y; Li Y; Xu Q; Chen N; Xie X
    Metab Eng Commun; 2020 Dec; 11():e00151. PubMed ID: 33251110
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Systems-wide analysis and engineering of metabolic pathway fluxes in bio-succinate producing Basfia succiniciproducens.
    Becker J; Reinefeld J; Stellmacher R; Schäfer R; Lange A; Meyer H; Lalk M; Zelder O; von Abendroth G; Schröder H; Haefner S; Wittmann C
    Biotechnol Bioeng; 2013 Nov; 110(11):3013-23. PubMed ID: 23832568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.