These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 30253060)
1. Fiber-Based Mini Tissue with Morphology-Controllable GelMA Microfibers. Shao L; Gao Q; Zhao H; Xie C; Fu J; Liu Z; Xiang M; He Y Small; 2018 Nov; 14(44):e1802187. PubMed ID: 30253060 [TBL] [Abstract][Full Text] [Related]
2. Bioprinting of Cell-Laden Microfiber: Can It Become a Standard Product? Shao L; Gao Q; Xie C; Fu J; Xiang M; He Y Adv Healthc Mater; 2019 May; 8(9):e1900014. PubMed ID: 30866173 [TBL] [Abstract][Full Text] [Related]
3. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Liu W; Zhong Z; Hu N; Zhou Y; Maggio L; Miri AK; Fragasso A; Jin X; Khademhosseini A; Zhang YS Biofabrication; 2018 Jan; 10(2):024102. PubMed ID: 29176035 [TBL] [Abstract][Full Text] [Related]
4. Pre-shear bioprinting of highly oriented porous hydrogel microfibers to construct anisotropic tissues. Shao L; Hou R; Zhu Y; Yao Y Biomater Sci; 2021 Oct; 9(20):6763-6771. PubMed ID: 34286720 [TBL] [Abstract][Full Text] [Related]
5. Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks. Xie M; Yu K; Sun Y; Shao L; Nie J; Gao Q; Qiu J; Fu J; Chen Z; He Y J Vis Exp; 2019 Dec; (154):. PubMed ID: 31904016 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic-based generation of functional microfibers for biomimetic complex tissue construction. Zuo Y; He X; Yang Y; Wei D; Sun J; Zhong M; Xie R; Fan H; Zhang X Acta Biomater; 2016 Jul; 38():153-62. PubMed ID: 27130274 [TBL] [Abstract][Full Text] [Related]
7. Effects of Encapsulated Cells on the Physical-Mechanical Properties and Microstructure of Gelatin Methacrylate Hydrogels. Krishnamoorthy S; Noorani B; Xu C Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31614713 [TBL] [Abstract][Full Text] [Related]
8. Bioprinting small diameter blood vessel constructs with an endothelial and smooth muscle cell bilayer in a single step. Xu L; Varkey M; Jorgensen A; Ju J; Jin Q; Park JH; Fu Y; Zhang G; Ke D; Zhao W; Hou R; Atala A Biofabrication; 2020 Jul; 12(4):045012. PubMed ID: 32619999 [TBL] [Abstract][Full Text] [Related]
9. 3D printed high-resolution scaffold with hydrogel microfibers for providing excellent biocompatibility. Ye W; Xie C; Liu Y; He Y; Gao Q; Ouyang A J Biomater Appl; 2021 Jan; 35(6):633-642. PubMed ID: 32996360 [TBL] [Abstract][Full Text] [Related]
10. Stereolithography 3D Bioprinting Method for Fabrication of Human Corneal Stroma Equivalent. Mahdavi SS; Abdekhodaie MJ; Kumar H; Mashayekhan S; Baradaran-Rafii A; Kim K Ann Biomed Eng; 2020 Jul; 48(7):1955-1970. PubMed ID: 32504140 [TBL] [Abstract][Full Text] [Related]
11. Recent advances on gelatin methacrylate hydrogels with controlled microstructures for tissue engineering. Zhang Y; Chen H; Li J Int J Biol Macromol; 2022 Nov; 221():91-107. PubMed ID: 36057299 [TBL] [Abstract][Full Text] [Related]
12. Vascularized Bone-Mimetic Hydrogel Constructs by 3D Bioprinting to Promote Osteogenesis and Angiogenesis. Anada T; Pan CC; Stahl AM; Mori S; Fukuda J; Suzuki O; Yang Y Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30836606 [TBL] [Abstract][Full Text] [Related]
13. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Yue K; Trujillo-de Santiago G; Alvarez MM; Tamayol A; Annabi N; Khademhosseini A Biomaterials; 2015 Dec; 73():254-71. PubMed ID: 26414409 [TBL] [Abstract][Full Text] [Related]
14. Recent Advances on Bioprinted Gelatin Methacrylate-Based Hydrogels for Tissue Repair. Rajabi N; Rezaei A; Kharaziha M; Bakhsheshi-Rad HR; Luo H; RamaKrishna S; Berto F Tissue Eng Part A; 2021 Jun; 27(11-12):679-702. PubMed ID: 33499750 [TBL] [Abstract][Full Text] [Related]
15. Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration. Celikkin N; Mastrogiacomo S; Jaroszewicz J; Walboomers XF; Swieszkowski W J Biomed Mater Res A; 2018 Jan; 106(1):201-209. PubMed ID: 28884519 [TBL] [Abstract][Full Text] [Related]
16. Microfluidic Bioprinting for Engineering Vascularized Tissues and Organoids. Zhang YS; Pi Q; van Genderen AM J Vis Exp; 2017 Aug; (126):. PubMed ID: 28829418 [TBL] [Abstract][Full Text] [Related]
17. Gelatin Methacrylate (GelMA)-Based Hydrogels for Cell Transplantation: an Effective Strategy for Tissue Engineering. Xiao S; Zhao T; Wang J; Wang C; Du J; Ying L; Lin J; Zhang C; Hu W; Wang L; Xu K Stem Cell Rev Rep; 2019 Oct; 15(5):664-679. PubMed ID: 31154619 [TBL] [Abstract][Full Text] [Related]
18. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity. Ning L; Mehta R; Cao C; Theus A; Tomov M; Zhu N; Weeks ER; Bauser-Heaton H; Serpooshan V ACS Appl Mater Interfaces; 2020 Oct; 12(40):44563-44577. PubMed ID: 32966746 [TBL] [Abstract][Full Text] [Related]
19. Engineered Microfibers for Tissue Engineering. Su R; Ai Y; Wang J; Wu L; Sun H; Ding M; Xie R; Liang Q ACS Appl Bio Mater; 2024 Sep; 7(9):5823-5840. PubMed ID: 39145987 [TBL] [Abstract][Full Text] [Related]
20. Gelatin-based micro-hydrogel carrying genetically engineered human endothelial cells for neovascularization. Choi YH; Kim SH; Kim IS; Kim K; Kwon SK; Hwang NS Acta Biomater; 2019 Sep; 95():285-296. PubMed ID: 30710712 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]