BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 30253099)

  • 21. Deciphering oncogenic drivers: from single genes to integrated pathways.
    Chen J; Sun M; Shen B
    Brief Bioinform; 2015 May; 16(3):413-28. PubMed ID: 25378434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of High-Impact cis-Regulatory Mutations Using Transcription Factor Specific Random Forest Models.
    Svetlichnyy D; Imrichova H; Fiers M; Kalender Atak Z; Aerts S
    PLoS Comput Biol; 2015 Nov; 11(11):e1004590. PubMed ID: 26562774
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequence and structure signatures of cancer mutation hotspots in protein kinases.
    Dixit A; Yi L; Gowthaman R; Torkamani A; Schork NJ; Verkhivker GM
    PLoS One; 2009 Oct; 4(10):e7485. PubMed ID: 19834613
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sequence Neighborhoods Enable Reliable Prediction of Pathogenic Mutations in Cancer Genomes.
    Banerjee S; Raman K; Ravindran B
    Cancers (Basel); 2021 May; 13(10):. PubMed ID: 34068918
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis.
    Li A; Chapuy B; Varelas X; Sebastiani P; Monti S
    Sci Rep; 2019 Nov; 9(1):16904. PubMed ID: 31729402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oncogenes and tumor suppressor genes: comparative genomics and network perspectives.
    Zhu K; Liu Q; Zhou Y; Tao C; Zhao Z; Sun J; Xu H
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S8. PubMed ID: 26099335
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pan-cancer assessment of mutational landscape in intrinsically disordered hotspots reveals potential driver genes.
    Zou H; Pan T; Gao Y; Chen R; Li S; Guo J; Tian Z; Xu G; Xu J; Ma Y; Li Y
    Nucleic Acids Res; 2022 May; 50(9):e49. PubMed ID: 35061901
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of signals of positive and negative selection to distinguish cancer genes and passenger genes.
    Bányai L; Trexler M; Kerekes K; Csuka O; Patthy L
    Elife; 2021 Jan; 10():. PubMed ID: 33427197
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of constrained cancer driver genes based on mutation timing.
    Sakoparnig T; Fried P; Beerenwinkel N
    PLoS Comput Biol; 2015 Jan; 11(1):e1004027. PubMed ID: 25569148
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel network control model for identifying personalized driver genes in cancer.
    Guo WF; Zhang SW; Zeng T; Li Y; Gao J; Chen L
    PLoS Comput Biol; 2019 Nov; 15(11):e1007520. PubMed ID: 31765387
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.
    Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y
    Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Altered oncomodules underlie chromatin regulatory factors driver mutations.
    Frigola J; Iturbide A; Lopez-Bigas N; Peiro S; Gonzalez-Perez A
    Oncotarget; 2016 May; 7(21):30748-59. PubMed ID: 27095575
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An integrated deep learning and dynamic programming method for predicting tumor suppressor genes, oncogenes, and fusion from PDB structures.
    Anandanadarajah N; Chu CH; Loganantharaj R
    Comput Biol Med; 2021 Jun; 133():104323. PubMed ID: 33934067
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Uncovering driver genes in breast cancer through an innovative machine learning mutational analysis method.
    Taheri G; Habibi M
    Comput Biol Med; 2024 Mar; 171():108234. PubMed ID: 38430742
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Driver gene classification reveals a substantial overrepresentation of tumor suppressors among very large chromatin-regulating proteins.
    Waks Z; Weissbrod O; Carmeli B; Norel R; Utro F; Goldschmidt Y
    Sci Rep; 2016 Dec; 6():38988. PubMed ID: 28008934
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DORGE: Discovery of Oncogenes and tumoR suppressor genes using Genetic and Epigenetic features.
    Lyu J; Li JJ; Su J; Peng F; Chen YE; Ge X; Li W
    Sci Adv; 2020 Nov; 6(46):. PubMed ID: 33177077
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluating machine learning methodologies for identification of cancer driver genes.
    Malebary SJ; Khan YD
    Sci Rep; 2021 Jun; 11(1):12281. PubMed ID: 34112883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel ratio-metric features enable the identification of new driver genes across cancer types.
    Sudhakar M; Rengaswamy R; Raman K
    Sci Rep; 2022 Jan; 12(1):5. PubMed ID: 34997044
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of different functional prediction scores using a gene-based permutation model for identifying cancer driver genes.
    Nono AD; Chen K; Liu X
    BMC Med Genomics; 2019 Jan; 12(Suppl 1):22. PubMed ID: 30704472
    [TBL] [Abstract][Full Text] [Related]  

  • 40. EPIMUTESTR: a nearest neighbor machine learning approach to predict cancer driver genes from the evolutionary action of coding variants.
    Parvandeh S; Donehower LA; Panagiotis K; Hsu TK; Asmussen JK; Lee K; Lichtarge O
    Nucleic Acids Res; 2022 Jul; 50(12):e70. PubMed ID: 35412634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.