BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

471 related articles for article (PubMed ID: 30253099)

  • 41. Mutational patterns in oncogenes and tumour suppressors.
    Baeissa HM; Benstead-Hume G; Richardson CJ; Pearl FM
    Biochem Soc Trans; 2016 Jun; 44(3):925-31. PubMed ID: 27284061
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of Multi-Omics Characteristics on Identification of Driver Genes Using Machine Learning Algorithms.
    Li F; Chu X; Dai L; Wang J; Liu J; Shang J
    Genes (Basel); 2022 Apr; 13(5):. PubMed ID: 35627101
    [TBL] [Abstract][Full Text] [Related]  

  • 43. IDENTIFY CANCER DRIVER GENES THROUGH SHARED MENDELIAN DISEASE PATHOGENIC VARIANTS AND CANCER SOMATIC MUTATIONS.
    Ma M; Wang C; Glicksberg BS; Schadt EE; Li SD; Chen R
    Pac Symp Biocomput; 2017; 22():473-484. PubMed ID: 27896999
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A workflow to study mechanistic indicators for driver gene prediction with Moonlight.
    Nourbakhsh M; Saksager A; Tom N; Chen XS; Colaprico A; Olsen C; Tiberti M; Papaleo E
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37551622
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ontology-based prediction of cancer driver genes.
    Althubaiti S; Karwath A; Dallol A; Noor A; Alkhayyat SS; Alwassia R; Mineta K; Gojobori T; Beggs AD; Schofield PN; Gkoutos GV; Hoehndorf R
    Sci Rep; 2019 Nov; 9(1):17405. PubMed ID: 31757986
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dr.Nod: computational framework for discovery of regulatory non-coding drivers in tissue-matched distal regulatory elements.
    Tomkova M; Tomek J; Chow J; McPherson JD; Segal DJ; Hormozdiari F
    Nucleic Acids Res; 2023 Feb; 51(4):e23. PubMed ID: 36625266
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A new machine learning method for cancer mutation analysis.
    Habibi M; Taheri G
    PLoS Comput Biol; 2022 Oct; 18(10):e1010332. PubMed ID: 36251702
    [TBL] [Abstract][Full Text] [Related]  

  • 48. SB Driver Analysis: a Sleeping Beauty cancer driver analysis framework for identifying and prioritizing experimentally actionable oncogenes and tumor suppressors.
    Newberg JY; Black MA; Jenkins NA; Copeland NG; Mann KM; Mann MB
    Nucleic Acids Res; 2018 Sep; 46(16):e94. PubMed ID: 29846651
    [TBL] [Abstract][Full Text] [Related]  

  • 49. VarWalker: personalized mutation network analysis of putative cancer genes from next-generation sequencing data.
    Jia P; Zhao Z
    PLoS Comput Biol; 2014 Feb; 10(2):e1003460. PubMed ID: 24516372
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Driver gene mutations based clustering of tumors: methods and applications.
    Zhang W; Flemington EK; Zhang K
    Bioinformatics; 2018 Jul; 34(13):i404-i411. PubMed ID: 29950003
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effects of mutational processes and selection on driver mutations across cancer types.
    Temko D; Tomlinson IPM; Severini S; Schuster-Böckler B; Graham TA
    Nat Commun; 2018 May; 9(1):1857. PubMed ID: 29748584
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamic changes of driver genes' mutations across clinical stages in nine cancer types.
    Li X
    Cancer Med; 2016 Jul; 5(7):1556-65. PubMed ID: 26992457
    [TBL] [Abstract][Full Text] [Related]  

  • 53. OncodriveROLE classifies cancer driver genes in loss of function and activating mode of action.
    Schroeder MP; Rubio-Perez C; Tamborero D; Gonzalez-Perez A; Lopez-Bigas N
    Bioinformatics; 2014 Sep; 30(17):i549-55. PubMed ID: 25161246
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identifying cancer type specific oncogenes and tumor suppressors using limited size data.
    Pavel AB; Vasile CI
    J Bioinform Comput Biol; 2016 Dec; 14(6):1650031. PubMed ID: 27712196
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synonymous mutations frequently act as driver mutations in human cancers.
    Supek F; Miñana B; Valcárcel J; Gabaldón T; Lehner B
    Cell; 2014 Mar; 156(6):1324-1335. PubMed ID: 24630730
    [TBL] [Abstract][Full Text] [Related]  

  • 56. InDEP: an interpretable machine learning approach to predict cancer driver genes from multi-omics data.
    Yang H; Liu Y; Yang Y; Li D; Wang Z
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37649392
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of coding and non-coding mutational hotspots in cancer genomes.
    Piraino SW; Furney SJ
    BMC Genomics; 2017 Jan; 18(1):17. PubMed ID: 28056774
    [TBL] [Abstract][Full Text] [Related]  

  • 58. DEOD: uncovering dominant effects of cancer-driver genes based on a partial covariance selection method.
    Amgalan B; Lee H
    Bioinformatics; 2015 Aug; 31(15):2452-60. PubMed ID: 25819079
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Network-based prediction approach for cancer-specific driver missense mutations using a graph neural network.
    Hatano N; Kamada M; Kojima R; Okuno Y
    BMC Bioinformatics; 2023 Oct; 24(1):383. PubMed ID: 37817080
    [TBL] [Abstract][Full Text] [Related]  

  • 60. QuaDMutNetEx: a method for detecting cancer driver genes with low mutation frequency.
    Bokhari Y; Alhareeri A; Arodz T
    BMC Bioinformatics; 2020 Mar; 21(1):122. PubMed ID: 32293263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.