BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 30253201)

  • 1. Utilizing microphysiological systems and induced pluripotent stem cells for disease modeling: a case study for blood brain barrier research in a pharmaceutical setting.
    Fabre KM; Delsing L; Hicks R; Colclough N; Crowther DC; Ewart L
    Adv Drug Deliv Rev; 2019 Feb; 140():129-135. PubMed ID: 30253201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology.
    Watson DE; Hunziker R; Wikswo JP
    Exp Biol Med (Maywood); 2017 Oct; 242(16):1559-1572. PubMed ID: 29065799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in human iPSC-derived models of the blood-brain barrier.
    Workman MJ; Svendsen CN
    Fluids Barriers CNS; 2020 Apr; 17(1):30. PubMed ID: 32321511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microphysiological Systems (Tissue Chips) and their Utility for Rare Disease Research.
    Low LA; Tagle DA
    Adv Exp Med Biol; 2017; 1031():405-415. PubMed ID: 29214585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood-Brain Barrier and Neurodegenerative Diseases-Modeling with iPSC-Derived Brain Cells.
    Wu YC; Sonninen TM; Peltonen S; Koistinaho J; Lehtonen Š
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Best Practices for Translational Disease Modeling Using Human iPSC-Derived Neurons.
    Engle SJ; Blaha L; Kleiman RJ
    Neuron; 2018 Nov; 100(4):783-797. PubMed ID: 30465765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Establishment of a Human iPSC- and Nanofiber-Based Microphysiological Blood-Brain Barrier System.
    Qi D; Wu S; Lin H; Kuss MA; Lei Y; Krasnoslobodtsev A; Ahmed S; Zhang C; Kim HJ; Jiang P; Duan B
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):21825-21835. PubMed ID: 29897225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Introduction to a manuscript series on the characterization and use of microphysiological systems (MPS) in pharmaceutical safety and ADME applications.
    Fabre K; Berridge B; Proctor WR; Ralston S; Will Y; Baran SW; Yoder G; Van Vleet TR
    Lab Chip; 2020 Mar; 20(6):1049-1057. PubMed ID: 32073020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new era of disease modeling and drug discovery using induced pluripotent stem cells.
    Suh W
    Arch Pharm Res; 2017 Jan; 40(1):1-12. PubMed ID: 27921262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human pluripotent stem cells as tools for neurodegenerative and neurodevelopmental disease modeling and drug discovery.
    Corti S; Faravelli I; Cardano M; Conti L
    Expert Opin Drug Discov; 2015 Jun; 10(6):615-29. PubMed ID: 25891144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microphysiological Systems: A Pathologist's Perspective.
    Sura R; Van Vleet T; Berridge BR
    Vet Pathol; 2020 May; 57(3):358-368. PubMed ID: 32180532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Human Stem Cell-Derived Brain-Liver Chip for Assessing Blood-Brain-Barrier Permeation of Pharmaceutical Drugs.
    Koenig L; Ramme AP; Faust D; Mayer M; Flötke T; Gerhartl A; Brachner A; Neuhaus W; Appelt-Menzel A; Metzger M; Marx U; Dehne EM
    Cells; 2022 Oct; 11(20):. PubMed ID: 36291161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microphysiological systems in early stage drug development: Perspectives on current applications and future impact.
    Kopec AK; Yokokawa R; Khan N; Horii I; Finley JE; Bono CP; Donovan C; Roy J; Harney J; Burdick AD; Jessen B; Lu S; Collinge M; Sadeghian RB; Derzi M; Tomlinson L; Burkhardt JE
    J Toxicol Sci; 2021; 46(3):99-114. PubMed ID: 33642521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of mutations associated with familial neurodegenerative disorders on blood-brain barrier function in an iPSC model.
    Katt ME; Mayo LN; Ellis SE; Mahairaki V; Rothstein JD; Cheng L; Searson PC
    Fluids Barriers CNS; 2019 Jul; 16(1):20. PubMed ID: 31303172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microphysiological systems meet hiPSC technology - New tools for disease modeling of liver infections in basic research and drug development.
    Raasch M; Fritsche E; Kurtz A; Bauer M; Mosig AS
    Adv Drug Deliv Rev; 2019 Feb; 140():51-67. PubMed ID: 29908880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryopreservation of Brain Endothelial Cells Derived from Human Induced Pluripotent Stem Cells Is Enhanced by Rho-Associated Coiled Coil-Containing Kinase Inhibition.
    Wilson HK; Faubion MG; Hjortness MK; Palecek SP; Shusta EV
    Tissue Eng Part C Methods; 2016 Dec; 22(12):1085-1094. PubMed ID: 27846787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved Ocular Tissue Models and Eye-On-A-Chip Technologies Will Facilitate Ophthalmic Drug Development.
    Wright CB; Becker SM; Low LA; Tagle DA; Sieving PA
    J Ocul Pharmacol Ther; 2020; 36(1):25-29. PubMed ID: 31166829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug discovery using induced pluripotent stem cell models of neurodegenerative and ocular diseases.
    Hung SSC; Khan S; Lo CY; Hewitt AW; Wong RCB
    Pharmacol Ther; 2017 Sep; 177():32-43. PubMed ID: 28223228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microphysiological Systems: Stakeholder Challenges to Adoption in Drug Development.
    Hargrove-Grimes P; Low LA; Tagle DA
    Cells Tissues Organs; 2022; 211(3):269-281. PubMed ID: 34380142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Development of Microphysiological Systems (MPSs) Based on Microfluidic Technology for Drug Discovery in Japan].
    Kimura H
    Yakugaku Zasshi; 2023; 143(1):39-44. PubMed ID: 36596538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.