BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 30253201)

  • 21. [Development of Microphysiological Systems (MPSs) Based on Microfluidic Technology for Drug Discovery in Japan].
    Kimura H
    Yakugaku Zasshi; 2023; 143(1):39-44. PubMed ID: 36596538
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An isogenic blood-brain barrier model comprising brain endothelial cells, astrocytes, and neurons derived from human induced pluripotent stem cells.
    Canfield SG; Stebbins MJ; Morales BS; Asai SW; Vatine GD; Svendsen CN; Palecek SP; Shusta EV
    J Neurochem; 2017 Mar; 140(6):874-888. PubMed ID: 27935037
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.
    Liu Y; Deng W
    Brain Res; 2016 May; 1638(Pt A):30-41. PubMed ID: 26423934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Usefulness of a humanized tricellular static transwell blood-brain barrier model as a microphysiological system for drug development applications. - A case study based on the benchmark evaluations of blood-brain barrier microphysiological system.
    Nakayama-Kitamura K; Shigemoto-Mogami Y; Toyoda H; Mihara I; Moriguchi H; Naraoka H; Furihata T; Ishida S; Sato K
    Regen Ther; 2023 Mar; 22():192-202. PubMed ID: 36891355
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human iPSC-based cardiac microphysiological system for drug screening applications.
    Mathur A; Loskill P; Shao K; Huebsch N; Hong S; Marcus SG; Marks N; Mandegar M; Conklin BR; Lee LP; Healy KE
    Sci Rep; 2015 Mar; 5():8883. PubMed ID: 25748532
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microphysiological Blood-Brain Barrier Systems for Disease Modeling and Drug Development.
    Mulay AR; Hwang J; Kim DH
    Adv Healthc Mater; 2024 Mar; ():e2303180. PubMed ID: 38430211
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human inducible pluripotent stem cells: Realization of initial promise in drug discovery.
    Kleiman RJ; Engle SJ
    Cell Stem Cell; 2021 Sep; 28(9):1507-1515. PubMed ID: 34478628
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling Neurovascular Disorders and Therapeutic Outcomes with Human-Induced Pluripotent Stem Cells.
    Bosworth AM; Faley SL; Bellan LM; Lippmann ES
    Front Bioeng Biotechnol; 2017; 5():87. PubMed ID: 29441348
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The relevance and potential roles of microphysiological systems in biology and medicine.
    Wikswo JP
    Exp Biol Med (Maywood); 2014 Sep; 239(9):1061-72. PubMed ID: 25187571
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Translation of Human-Induced Pluripotent Stem Cells: From Clinical Trial in a Dish to Precision Medicine.
    Sayed N; Liu C; Wu JC
    J Am Coll Cardiol; 2016 May; 67(18):2161-2176. PubMed ID: 27151349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tissue Chips to aid drug development and modeling for rare diseases.
    Low LA; Tagle DA
    Expert Opin Orphan Drugs; 2016; 4(11):1113-1121. PubMed ID: 28626620
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activation of RARα, RARγ, or RXRα Increases Barrier Tightness in Human Induced Pluripotent Stem Cell-Derived Brain Endothelial Cells.
    Stebbins MJ; Lippmann ES; Faubion MG; Daneman R; Palecek SP; Shusta EV
    Biotechnol J; 2018 Feb; 13(2):. PubMed ID: 28960887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Barrier Properties and Transcriptome Expression in Human iPSC-Derived Models of the Blood-Brain Barrier.
    Delsing L; Dönnes P; Sánchez J; Clausen M; Voulgaris D; Falk A; Herland A; Brolén G; Zetterberg H; Hicks R; Synnergren J
    Stem Cells; 2018 Dec; 36(12):1816-1827. PubMed ID: 30171748
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D Engineering of Ocular Tissues for Disease Modeling and Drug Testing.
    Boutin ME; Hampton C; Quinn R; Ferrer M; Song MJ
    Adv Exp Med Biol; 2019; 1186():171-193. PubMed ID: 31654390
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advancing drug discovery for neuropsychiatric disorders using patient-specific stem cell models.
    Haggarty SJ; Silva MC; Cross A; Brandon NJ; Perlis RH
    Mol Cell Neurosci; 2016 Jun; 73():104-15. PubMed ID: 26826498
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D human brain cell models: New frontiers in disease understanding and drug discovery for neurodegenerative diseases.
    Korhonen P; Malm T; White AR
    Neurochem Int; 2018 Nov; 120():191-199. PubMed ID: 30176269
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening.
    Wang YI; Abaci HE; Shuler ML
    Biotechnol Bioeng; 2017 Jan; 114(1):184-194. PubMed ID: 27399645
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Huntington's Disease iPSC-Derived Brain Microvascular Endothelial Cells Reveal WNT-Mediated Angiogenic and Blood-Brain Barrier Deficits.
    Lim RG; Quan C; Reyes-Ortiz AM; Lutz SE; Kedaigle AJ; Gipson TA; Wu J; Vatine GD; Stocksdale J; Casale MS; Svendsen CN; Fraenkel E; Housman DE; Agalliu D; Thompson LM
    Cell Rep; 2017 May; 19(7):1365-1377. PubMed ID: 28514657
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [MPS for Blood Brain Barrier].
    Sato K; Matsusaki M
    Yakugaku Zasshi; 2023; 143(1):45-53. PubMed ID: 36596539
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stem cell-based Lung-on-Chips: The best of both worlds?
    Nawroth JC; Barrile R; Conegliano D; van Riet S; Hiemstra PS; Villenave R
    Adv Drug Deliv Rev; 2019 Feb; 140():12-32. PubMed ID: 30009883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.