These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 30253233)

  • 1. Target probability modulates fixation-related potentials in visual search.
    Hiebel H; Ischebeck A; Brunner C; Nikolaev AR; Höfler M; Körner C
    Biol Psychol; 2018 Oct; 138():199-210. PubMed ID: 30253233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saccadic context indicates information processing within visual fixations: evidence from event-related potentials and eye-movements analysis of the distractor effect.
    Graupner ST; Pannasch S; Velichkovsky BM
    Int J Psychophysiol; 2011 Apr; 80(1):54-62. PubMed ID: 21291920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinguishing between target and nontarget fixations in a visual search task using fixation-related potentials.
    Brouwer AM; Reuderink B; Vincent J; van Gerven MA; van Erp JB
    J Vis; 2013 Jul; 13(3):17. PubMed ID: 23863335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An eye fixation-related potentials analysis of the P300 potential for fixations onto a target object when exploring natural scenes.
    Devillez H; Guyader N; Guérin-Dugué A
    J Vis; 2015; 15(13):20. PubMed ID: 26401627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remembered but unused: the accessory items in working memory that do not guide attention.
    Peters JC; Goebel R; Roelfsema PR
    J Cogn Neurosci; 2009 Jun; 21(6):1081-91. PubMed ID: 18702589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential effects in continued visual search: using fixation-related potentials to compare distractor processing before and after target detection.
    Körner C; Braunstein V; Stangl M; Schlögl A; Neuper C; Ischebeck A
    Psychophysiology; 2014 Apr; 51(4):385-95. PubMed ID: 24512467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rewarded visual items capture attention only in heterogeneous contexts.
    Feldmann-Wüstefeld T; Brandhofer R; Schubö A
    Psychophysiology; 2016 Jul; 53(7):1063-73. PubMed ID: 26997364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Looking for a face in the crowd: fixation-related potentials in an eye-movement visual search task.
    Kaunitz LN; Kamienkowski JE; Varatharajah A; Sigman M; Quiroga RQ; Ison MJ
    Neuroimage; 2014 Apr; 89():297-305. PubMed ID: 24342226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parsing a mental program: Fixation-related brain signatures of unitary operations and routines in natural visual search.
    Kamienkowski JE; Varatharajah A; Sigman M; Ison MJ
    Neuroimage; 2018 Dec; 183():73-86. PubMed ID: 30096368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fixation-related lambda response: Effects of saccade magnitude, spatial frequency, and ocular artifact removal.
    Ries AJ; Slayback D; Touryan J
    Int J Psychophysiol; 2018 Dec; 134():1-8. PubMed ID: 30267730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selecting and ignoring salient objects within and across dimensions in visual search.
    Schubö A; Müller HJ
    Brain Res; 2009 Aug; 1283():84-101. PubMed ID: 19501066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hand function, not proximity, biases visuotactile integration later in object processing: An ERP study.
    Vyas DB; Garza JP; Reed CL
    Conscious Cogn; 2019 Mar; 69():26-35. PubMed ID: 30685514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving free-viewing fixation-related EEG potentials with continuous-time regression.
    Cornelissen T; Sassenhagen J; Võ ML
    J Neurosci Methods; 2019 Feb; 313():77-94. PubMed ID: 30590085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coregistration of eye movements and EEG in natural reading: analyses and review.
    Dimigen O; Sommer W; Hohlfeld A; Jacobs AM; Kliegl R
    J Exp Psychol Gen; 2011 Nov; 140(4):552-72. PubMed ID: 21744985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Difficulty of discrimination modulates attentional capture by regulating attentional focus.
    Sawaki R; Katayama J
    J Cogn Neurosci; 2009 Feb; 21(2):359-71. PubMed ID: 18510441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Target processing in overt serial visual search involves the dorsal attention network: A fixation-based event-related fMRI study.
    Ischebeck A; Hiebel H; Miller J; Höfler M; Gilchrist ID; Körner C
    Neuropsychologia; 2021 Mar; 153():107763. PubMed ID: 33493526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attention and oculomotor control: a high-density ERP study of the gap effect.
    Csibra G; Johnson MH; Tucker LA
    Neuropsychologia; 1997 Jun; 35(6):855-65. PubMed ID: 9204490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of neural systems of visual attention in schizophrenia.
    Potts GF; O'Donnell BF; Hirayasu Y; McCarley RW
    Arch Gen Psychiatry; 2002 May; 59(5):418-24. PubMed ID: 11982445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [DYNAMICS OF GAZE FIXATION DURATION AND EVENT RELATED POTENTIALS WHILE PRESENTATION FADING-IN IMAGES AND DISTRACTORS].
    Koltunova TI; Podladchikova LN; Shaposhnikov DG; Vladimirski BM; Syrkin LD; Kruchkov BI; Usov VM
    Ross Fiziol Zh Im I M Sechenova; 2015 Oct; 101(10):1202-12. PubMed ID: 26827499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saccades and covert shifts of attention during active visual search: spatial distributions, memory, and items per fixation.
    Motter BC; Holsapple J
    Vision Res; 2007 May; 47(10):1261-81. PubMed ID: 17418364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.