BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 3025328)

  • 1. The pituitary adrenocorticotropes originate from neural ridge tissue in Xenopus laevis.
    Eagleson GW; Jenks BG; Van Overbeeke AP
    J Embryol Exp Morphol; 1986 Jun; 95():1-14. PubMed ID: 3025328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuroectodermal origin of avian hypothalamo-hypophyseal complex: the role of the ventral neural ridge.
    Takor TT; Pearse AG
    J Embryol Exp Morphol; 1975 Oct; 34(2):311-25. PubMed ID: 1194833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping of the presumptive brain regions in the neural plate of Xenopus laevis.
    Eagleson GW; Harris WA
    J Neurobiol; 1990 Apr; 21(3):427-40. PubMed ID: 2351962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pituitary melanotrope cells of Xenopus laevis are of neural ridge origin and do not require induction by the infundibulum.
    Eagleson GW; Selten MM; Roubos EW; Jenks BG
    Gen Comp Endocrinol; 2012 Aug; 178(1):116-22. PubMed ID: 22569169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fate of the anterior neural ridge and the morphogenesis of the Xenopus forebrain.
    Eagleson G; Ferreiro B; Harris WA
    J Neurobiol; 1995 Oct; 28(2):146-58. PubMed ID: 8537821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of the ectopically transplanted primordium of epithelial hypophysis (anterior neural ridge) in Bufo japonicus embryos.
    Kikuyama S; Inaco H; Jenks BG; Kawamura K
    J Exp Zool; 1993 Jul; 266(3):216-20. PubMed ID: 8515204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alpha-melanophore-stimulating hormone in the brain, cranial placode derivatives, and retina of Xenopus laevis during development in relation to background adaptation.
    Kramer BM; Claassen IE; Westphal NJ; Jansen M; Tuinhof R; Jenks BG; Roubos EW
    J Comp Neurol; 2003 Jan; 456(1):73-83. PubMed ID: 12508315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pituitary proopiomelanocortin-derived peptides and hypothalamus-pituitary-interrenal axis activity in gilthead sea bream (Sparus aurata) during prolonged crowding stress: differential regulation of adrenocorticotropin hormone and alpha-melanocyte-stimulating hormone release by corticotropin-releasing hormone and thyrotropin-releasing hormone.
    Rotllant J; Balm PH; Ruane NM; Pérez-Sánchez J; Wendelaar-Bonga SE; Tort L
    Gen Comp Endocrinol; 2000 Aug; 119(2):152-63. PubMed ID: 10936035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of starvation on Fos and neuropeptide immunoreactivities in the brain and pituitary gland of Xenopus laevis.
    Calle M; Kozicz T; van der Linden E; Desfeux A; Veening JG; Barendregt HP; Roubos EW
    Gen Comp Endocrinol; 2006 Jul; 147(3):237-46. PubMed ID: 16483575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation in the neural plate of Xenopus laevis demonstrated by genetic markers.
    Szaro B; Ide C; Kaye C; Tompkins R
    J Exp Zool; 1985 Apr; 234(1):117-29. PubMed ID: 3989493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early development of the pituitary gland in Acipenser naccarii (Chondrostei, Acipenseriformes): an immunocytochemical study.
    Grandi G; Chicca M
    Anat Embryol (Berl); 2004 Jul; 208(4):311-21. PubMed ID: 15235908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain distribution and evidence for both central and neurohormonal actions of cocaine- and amphetamine-regulated transcript peptide in Xenopus laevis.
    Roubos EW; Lázár G; Calle M; Barendregt HP; Gaszner B; Kozicz T
    J Comp Neurol; 2008 Apr; 507(4):1622-38. PubMed ID: 18220255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that the border of the neural plate may be positioned by the interaction between signals that induce ventral and dorsal mesoderm.
    Zhang J; Jacobson AG
    Dev Dyn; 1993 Feb; 196(2):79-90. PubMed ID: 8364224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is there a ventral neural ridge in chick embryos? Implications for the origin of adenohypophyseal and other APUD cells.
    Levy NB; Andrew A; Rawdon BB; Kramer B
    J Embryol Exp Morphol; 1980 Jun; 57():71-8. PubMed ID: 6107326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesoderm induction in Xenopus laevis: a quantitative study using a cell lineage label and tissue-specific antibodies.
    Dale L; Smith JC; Slack JM
    J Embryol Exp Morphol; 1985 Oct; 89():289-312. PubMed ID: 3912458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locations of androgen-concentrating cells in the brain of Xenopus laevis: autoradiography with 3H-dihydrotestosterone.
    Kelley DB
    J Comp Neurol; 1981 Jun; 199(2):221-31. PubMed ID: 7251941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of proneuropeptide Y-derived peptides in the brain of Rana esculenta and Xenopus laevis.
    Lázár G; Maderdrut JL; Trasti SL; Liposits Z; Tóth P; Kozicz T; Merchenthaler I
    J Comp Neurol; 1993 Jan; 327(4):551-71. PubMed ID: 8440780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dorsalization and neural induction: properties of the organizer in Xenopus laevis.
    Smith JC; Slack JM
    J Embryol Exp Morphol; 1983 Dec; 78():299-317. PubMed ID: 6663230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of XBtg2 in Xenopus neural development.
    Sugimoto K; Okabayashi K; Sedohara A; Hayata T; Asashima M
    Dev Neurosci; 2007; 29(6):468-79. PubMed ID: 17119321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-step induction of primitive erythrocytes in Xenopus laevis embryos: signals from the vegetal endoderm and the overlying ectoderm.
    Kikkawa M; Yamazaki M; Izutsu Y; Maéno M
    Int J Dev Biol; 2001 Apr; 45(2):387-96. PubMed ID: 11330858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.