These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 30253301)
1. The combined toxicity effect of nanoplastics and glyphosate on Microcystis aeruginosa growth. Zhang Q; Qu Q; Lu T; Ke M; Zhu Y; Zhang M; Zhang Z; Du B; Pan X; Sun L; Qian H Environ Pollut; 2018 Dec; 243(Pt B):1106-1112. PubMed ID: 30253301 [TBL] [Abstract][Full Text] [Related]
2. Physiological effects of the herbicide glyphosate on the cyanobacterium Microcystis aeruginosa. Wu L; Qiu Z; Zhou Y; Du Y; Liu C; Ye J; Hu X Aquat Toxicol; 2016 Sep; 178():72-9. PubMed ID: 27472782 [TBL] [Abstract][Full Text] [Related]
3. Effects of glyphosate at environmentally relevant concentrations on the growth of and microcystin production by Microcystis aeruginosa. Zhang Q; Zhou H; Li Z; Zhu J; Zhou C; Zhao M Environ Monit Assess; 2016 Nov; 188(11):632. PubMed ID: 27771872 [TBL] [Abstract][Full Text] [Related]
4. Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana. Bergami E; Pugnalini S; Vannuccini ML; Manfra L; Faleri C; Savorelli F; Dawson KA; Corsi I Aquat Toxicol; 2017 Aug; 189():159-169. PubMed ID: 28644993 [TBL] [Abstract][Full Text] [Related]
5. Combined effects of nanoplastics and copper on the freshwater alga Raphidocelis subcapitata. Bellingeri A; Bergami E; Grassi G; Faleri C; Redondo-Hasselerharm P; Koelmans AA; Corsi I Aquat Toxicol; 2019 May; 210():179-187. PubMed ID: 30870664 [TBL] [Abstract][Full Text] [Related]
6. Acute effects of three surface-modified nanoplastics against Microcystis aeruginosa: Growth, microcystin production, and mechanisms. Zheng X; Zhang L; Jiang C; Li J; Li Y; Liu X; Li C; Wang Z; Zheng N; Fan Z Sci Total Environ; 2023 Jan; 855():158906. PubMed ID: 36150599 [TBL] [Abstract][Full Text] [Related]
7. Toxicity effects of microplastics and nanoplastics with cadmium on the alga Microcystis aeruginosa. Wang Q; Wang J; Chen H; Zhang Y Environ Sci Pollut Res Int; 2023 Feb; 30(7):17360-17373. PubMed ID: 36194332 [TBL] [Abstract][Full Text] [Related]
8. Physiological and biochemical responses of Microcystis aeruginosa to glyphosate and its Roundup® formulation. Qiu H; Geng J; Ren H; Xia X; Wang X; Yu Y J Hazard Mater; 2013 Mar; 248-249():172-6. PubMed ID: 23357506 [TBL] [Abstract][Full Text] [Related]
9. Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. Annett R; Habibi HR; Hontela A J Appl Toxicol; 2014 May; 34(5):458-79. PubMed ID: 24615870 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic study on the increase of Microcystin-LR synthesis and release in Microcystis aeruginosa by amino-modified nano-plastics. Huang J; Gu P; Cao X; Miao H; Wang Z J Hazard Mater; 2024 Aug; 474():134767. PubMed ID: 38820757 [TBL] [Abstract][Full Text] [Related]
11. Antioxidant enzyme activities of Microcystis aeruginosa in response to nonylphenols and degradation of nonylphenols by M. aeruginosa. Wang J; Xie P Environ Geochem Health; 2007 Oct; 29(5):375-83. PubMed ID: 17342429 [TBL] [Abstract][Full Text] [Related]
12. Multistressor negative effects on an experimental phytoplankton community. The case of glyphosate and one toxigenic cyanobacterium on Chlorophycean microalgae. Hernández-García CI; Martínez-Jerónimo F Sci Total Environ; 2020 May; 717():137186. PubMed ID: 32084686 [TBL] [Abstract][Full Text] [Related]
13. The Growth, Apoptosis and Oxidative Stress in Microcystis viridis Exposed to Glyphosate. Ye J; Huang C; Qiu Z; Wu L; Xu C Bull Environ Contam Toxicol; 2019 Oct; 103(4):585-589. PubMed ID: 31428844 [TBL] [Abstract][Full Text] [Related]
14. Influence of mixed antibiotics on Microcystis aeruginosa during the application of glyphosate and hydrogen peroxide algaecides. Yu S; Liu Y; Zhang J; Gao B J Phycol; 2019 Apr; 55(2):457-465. PubMed ID: 30633819 [TBL] [Abstract][Full Text] [Related]
15. The photosynthetic toxicity of nano-polystyrene to Microcystis aeruginosa is influenced by surface modification and light intensity. Xu K; Zhao L; Juneau P; Chen Z; Zheng X; Lian Y; Li W; Huang P; Yan Q; Chen X; He Z Environ Pollut; 2024 Sep; 356():124206. PubMed ID: 38795819 [TBL] [Abstract][Full Text] [Related]
16. Polystyrene nanoplastics affect growth and microcystin production of Microcystis aeruginosa. Zheng X; Yuan Y; Li Y; Liu X; Wang X; Fan Z Environ Sci Pollut Res Int; 2021 Mar; 28(11):13394-13403. PubMed ID: 33180284 [TBL] [Abstract][Full Text] [Related]
17. Exposure to the herbicide 2,4-D produces different toxic effects in two different phytoplankters: A green microalga (Ankistrodesmus falcatus) and a toxigenic cyanobacterium (Microcystis aeruginosa). Martínez-Ruiz EB; Martínez-Jerónimo F Sci Total Environ; 2018 Apr; 619-620():1566-1578. PubMed ID: 29070448 [TBL] [Abstract][Full Text] [Related]
18. Acute effects of nanoplastics and microplastics on periphytic biofilms depending on particle size, concentration and surface modification. Miao L; Hou J; You G; Liu Z; Liu S; Li T; Mo Y; Guo S; Qu H Environ Pollut; 2019 Dec; 255(Pt 2):113300. PubMed ID: 31610513 [TBL] [Abstract][Full Text] [Related]
19. Interactions of cationic polystyrene nanoparticles with marine bivalve hemocytes in a physiological environment: Role of soluble hemolymph proteins. Canesi L; Ciacci C; Fabbri R; Balbi T; Salis A; Damonte G; Cortese K; Caratto V; Monopoli MP; Dawson K; Bergami E; Corsi I Environ Res; 2016 Oct; 150():73-81. PubMed ID: 27257827 [TBL] [Abstract][Full Text] [Related]
20. Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water. Ma Y; Huang A; Cao S; Sun F; Wang L; Guo H; Ji R Environ Pollut; 2016 Dec; 219():166-173. PubMed ID: 27814532 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]