These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30253502)

  • 1. Dependence of chaotic behavior on optical properties and electrostatic effects in double-beam torsional Casimir actuation.
    Tajik F; Sedighi M; Masoudi AA; Waalkens H; Palasantzas G
    Phys Rev E; 2018 Aug; 98(2-1):022210. PubMed ID: 30253502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence of non-equilibrium Casimir forces on material optical properties toward chaotic motion during device actuation.
    Tajik F; Babamahdi Z; Sedighi M; Masoudi AA; Palasantzas G
    Chaos; 2019 Sep; 29(9):093126. PubMed ID: 31575132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity of chaotic behavior to low optical frequencies of a double-beam torsional actuator.
    Tajik F; Sedighi M; Masoudi AA; Waalkens H; Palasantzas G
    Phys Rev E; 2019 Jul; 100(1-1):012201. PubMed ID: 31499864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chaotic behavior in Casimir oscillators: A case study for phase-change materials.
    Tajik F; Sedighi M; Khorrami M; Masoudi AA; Palasantzas G
    Phys Rev E; 2017 Oct; 96(4-1):042215. PubMed ID: 29347478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chaotic motion due to lateral Casimir forces during nonlinear actuation dynamics.
    Tajik F; Masoudi AA; Sedighi M; Palasantzas G
    Chaos; 2020 Jul; 30(7):073101. PubMed ID: 32752649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity of nonequilibrium Casimir forces on low frequency optical properties toward chaotic motion of microsystems: Drude vs plasma model.
    Tajik F; Masoudi AA; Babamahdi Z; Sedighi M; Palasantzas G
    Chaos; 2020 Feb; 30(2):023108. PubMed ID: 32113219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity of actuation dynamics on normal and lateral Casimir forces: Interaction of phase change and topological insulator materials.
    Tajik F; Sedighi M; Palasantzas G
    Chaos; 2021 Oct; 31(10):103103. PubMed ID: 34717335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear actuation of micromechanical Casimir oscillators with topological insulator materials toward chaotic motion: Sensitivity on magnetization and dielectric properties.
    Tajik F; Allameh N; Masoudi AA; Palasantzas G
    Chaos; 2022 Sep; 32(9):093149. PubMed ID: 36182392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of materials' optical response on actuation dynamics by Casimir forces.
    Sedighi M; Broer WH; Van der Veeke S; Svetovoy VB; Palasantzas G
    J Phys Condens Matter; 2015 Jun; 27(21):214014. PubMed ID: 25965096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Damping on the Dynamical Behavior of the Electrostatic Parallel-plate and Torsional Actuators with Intermolecular Forces.
    Lin WH; Zhao YP
    Sensors (Basel); 2007 Nov; 7(12):3012-3026. PubMed ID: 28903276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Saddle-center and periodic orbit: Dynamics near symmetric heteroclinic connection.
    Lerman LM; Trifonov KN
    Chaos; 2021 Feb; 31(2):023113. PubMed ID: 33653062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum mechanical actuation of microelectromechanical systems by the Casimir force.
    Chan HB; Aksyuk VA; Kleiman RN; Bishop DJ; Capasso F
    Science; 2001 Mar; 291(5510):1941-4. PubMed ID: 11239149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase space structure and chaotic scattering in near-integrable systems.
    Koch BP; Bruhn B
    Chaos; 1993 Oct; 3(4):443-457. PubMed ID: 12780051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homoclinic behaviors and chaotic motions of double layered viscoelastic nanoplates based on nonlocal theory and extended Melnikov method.
    Wang Y; Li FM; Wang YZ
    Chaos; 2015 Jun; 25(6):063108. PubMed ID: 26117102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometric determination of classical actions of heteroclinic and unstable periodic orbits.
    Li J; Tomsovic S
    Phys Rev E; 2017 Jun; 95(6-1):062224. PubMed ID: 28709367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homoclinic tangency and chaotic attractor disappearance in a dripping faucet experiment.
    Pinto RD; Sartorelli JC
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):342-7. PubMed ID: 11046271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melnikov method approach to control of homoclinic/heteroclinic chaos by weak harmonic excitations.
    Chacón R
    Philos Trans A Math Phys Eng Sci; 2006 Sep; 364(1846):2335-51. PubMed ID: 16893791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noise induced escape from a nonhyperbolic chaotic attractor of a periodically driven nonlinear oscillator.
    Chen Z; Li Y; Liu X
    Chaos; 2016 Jun; 26(6):063112. PubMed ID: 27368777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exact decomposition of homoclinic orbit actions in chaotic systems: Information reduction.
    Li J; Tomsovic S
    Phys Rev E; 2019 Mar; 99(3-1):032212. PubMed ID: 30999433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secondary homoclinic bifurcation theorems.
    Rom-Kedar V
    Chaos; 1995 Jun; 5(2):385-401. PubMed ID: 12780192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.