These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Enhanced settling of nonheavy inertial particles in homogeneous isotropic turbulence: The role of the pressure gradient and the Basset history force. van Hinsberg MA; Clercx HJ; Toschi F Phys Rev E; 2017 Feb; 95(2-1):023106. PubMed ID: 28297963 [TBL] [Abstract][Full Text] [Related]
6. Rotation rate of rods in turbulent fluid flow. Parsa S; Calzavarini E; Toschi F; Voth GA Phys Rev Lett; 2012 Sep; 109(13):134501. PubMed ID: 23030093 [TBL] [Abstract][Full Text] [Related]
7. Effect of particle shape on fluid statistics and particle dynamics in turbulent pipe flow. Gupta A; Clercx HJH; Toschi F Eur Phys J E Soft Matter; 2018 Oct; 41(10):116. PubMed ID: 30269258 [TBL] [Abstract][Full Text] [Related]
8. Preferential Rotation of Chiral Dipoles in Isotropic Turbulence. Kramel S; Voth GA; Tympel S; Toschi F Phys Rev Lett; 2016 Oct; 117(15):154501. PubMed ID: 27768367 [TBL] [Abstract][Full Text] [Related]
9. Orientation Dynamics of Sedimenting Anisotropic Particles in Turbulence. Anand P; Ray SS; Subramanian G Phys Rev Lett; 2020 Jul; 125(3):034501. PubMed ID: 32745414 [TBL] [Abstract][Full Text] [Related]
10. Clustering of charged inertial particles in turbulence. Lu J; Nordsiek H; Saw EW; Shaw RA Phys Rev Lett; 2010 May; 104(18):184505. PubMed ID: 20482181 [TBL] [Abstract][Full Text] [Related]
11. Intermittent distribution of inertial particles in turbulent flows. Balkovsky E; Falkovich G; Fouxon A Phys Rev Lett; 2001 Mar; 86(13):2790-3. PubMed ID: 11290040 [TBL] [Abstract][Full Text] [Related]
12. Heavy particle concentration in turbulence at dissipative and inertial scales. Bec J; Biferale L; Cencini M; Lanotte A; Musacchio S; Toschi F Phys Rev Lett; 2007 Feb; 98(8):084502. PubMed ID: 17359102 [TBL] [Abstract][Full Text] [Related]
13. Analytical theory of forced rotating sheared turbulence: the perpendicular case. Leprovost N; Kim EJ Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016301. PubMed ID: 18764044 [TBL] [Abstract][Full Text] [Related]
14. Polymer stretching in the inertial range of turbulence. Ahmad A; Vincenzi D Phys Rev E; 2016 May; 93(5):052605. PubMed ID: 27300949 [TBL] [Abstract][Full Text] [Related]
15. Particle chirality does not matter in the large-scale features of strong turbulence. Piumini G; Assen MPA; Lohse D; Verzicco R J Fluid Mech; 2024 Sep; 995():. PubMed ID: 39345690 [TBL] [Abstract][Full Text] [Related]
16. Spatiotemporal velocity-velocity correlation function in fully developed turbulence. Canet L; Rossetto V; Wschebor N; Balarac G Phys Rev E; 2017 Feb; 95(2-1):023107. PubMed ID: 28297914 [TBL] [Abstract][Full Text] [Related]
17. Tumbling of small axisymmetric particles in random and turbulent flows. Gustavsson K; Einarsson J; Mehlig B Phys Rev Lett; 2014 Jan; 112(1):014501. PubMed ID: 24483903 [TBL] [Abstract][Full Text] [Related]
18. Scale dependence of multiplier distributions for particle concentration, enstrophy, and dissipation in the inertial range of homogeneous turbulence. Hartlep T; Cuzzi JN; Weston B Phys Rev E; 2017 Mar; 95(3-1):033115. PubMed ID: 28415324 [TBL] [Abstract][Full Text] [Related]
19. Elastoinertial chains in a two-dimensional turbulent flow. Singh R; Gupta M; Picardo JR; Vincenzi D; Ray SS Phys Rev E; 2020 May; 101(5-1):053105. PubMed ID: 32575226 [TBL] [Abstract][Full Text] [Related]
20. Influence of particle-fluid density ratio on the dynamics of finite-size particles in homogeneous isotropic turbulent flows. Shen J; Lu Z; Wang LP; Peng C Phys Rev E; 2021 Aug; 104(2-2):025109. PubMed ID: 34525650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]