These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30253551)

  • 1. Expansion of a collisionless hypersonic plasma plume into a vacuum.
    Hu Y; Wang J
    Phys Rev E; 2018 Aug; 98(2-1):023204. PubMed ID: 30253551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron energization dynamics in interaction of self-generated magnetic vortices in upstream of collisionless electron/ion shocks.
    Naseri N; Bochkarev SG; Bychenkov VY; Khudik V; Shvets G
    Sci Rep; 2022 May; 12(1):7327. PubMed ID: 35513469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of gas dynamics for a laser-generated plasma: propagation into low-pressure gases.
    Le HC; Zeitoun DE; Parisse JD; Sentis M; Marine W
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt B):4152-61. PubMed ID: 11088944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser-generated plasma plume expansion: combined continuous-microscopic modeling.
    Itina TE; Hermann J; Delaporte P; Sentis M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066406. PubMed ID: 12513411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle energization in an expanding magnetized relativistic plasma.
    Liang E; Nishimura K; Li H; Gary SP
    Phys Rev Lett; 2003 Feb; 90(8):085001. PubMed ID: 12633432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plume Dynamics of Laser-Produced Swine Muscle Tissue Plasma.
    Camacho JJ; Diaz L; Marin-Roldan A; Moncayo S; Caceres JO
    Appl Spectrosc; 2016 Jul; 70(7):1228-38. PubMed ID: 27301327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of a purely electrostatic collisionless shock during the expansion of a dense plasma through a rarefied medium.
    Sarri G; Dieckmann ME; Kourakis I; Borghesi M
    Phys Rev Lett; 2011 Jul; 107(2):025003. PubMed ID: 21797614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic Study on Plasma Expansion along a Divergent Magnetic Field.
    Zhang Y; Charles C; Boswell R
    Phys Rev Lett; 2016 Jan; 116(2):025001. PubMed ID: 26824545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-generation of megagauss magnetic fields during the expansion of a plasma.
    Thaury C; Mora P; Héron A; Adam JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016408. PubMed ID: 20866748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral energy transfer and dissipation of magnetic energy from fluid to kinetic scales.
    Bowers K; Li H
    Phys Rev Lett; 2007 Jan; 98(3):035002. PubMed ID: 17358690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rarefaction acceleration and kinetic effects in thin-foil expansion into a vacuum.
    Mora P; Grismayer T
    Phys Rev Lett; 2009 Apr; 102(14):145001. PubMed ID: 19392445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of the collisionless expansion of spherical nanoplasmas.
    Peano F; Peinetti F; Mulas R; Coppa G; Silva LO
    Phys Rev Lett; 2006 May; 96(17):175002. PubMed ID: 16712307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion cooling in collisionless plasma expansion.
    Mora P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013107. PubMed ID: 25679723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-generated magnetic dipoles in weakly magnetized beam-plasma system.
    Jia Q; Mima K; Cai HB; Taguchi T; Nagatomo H; He XT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023107. PubMed ID: 25768618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conditions of structural transition for collisionless electrostatic shock.
    Ly MN; Sano T; Sakawa Y; Sentoku Y
    Phys Rev E; 2023 Aug; 108(2-2):025208. PubMed ID: 37723746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic theory molecular dynamics and hot dense matter: theoretical foundations.
    Graziani FR; Bauer JD; Murillo MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033104. PubMed ID: 25314544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rarefaction shock in plasma with a bi-Maxwellian electron distribution function.
    Diaw A; Mora P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036402. PubMed ID: 22060508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multispecies plasma expansion into vacuum: The role of secondary ions and suprathermal electrons.
    Elkamash IS; Kourakis I
    Phys Rev E; 2016 Nov; 94(5-1):053202. PubMed ID: 27967187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective Resistivity in Collisionless Magnetic Reconnection.
    Ma ZW; Chen T; Zhang HW; Yu MY
    Sci Rep; 2018 Jul; 8(1):10521. PubMed ID: 30002502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical expressions of the front shape of non-quasi-neutral plasma expansions with anisotropic electron pressures.
    Huang Y; Shi Y; Bi Y; Duan X; Wang N; Tang X; Gao Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056403. PubMed ID: 20365079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.