These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 30253563)
1. Passive swimming of a microcapsule in vertical fluid oscillation. Morita T; Omori T; Ishikawa T Phys Rev E; 2018 Aug; 98(2-1):023108. PubMed ID: 30253563 [TBL] [Abstract][Full Text] [Related]
2. Lattice Boltzmann simulations of the bead-spring microswimmer with a responsive stroke-from an individual to swarms. Pickl K; Pande J; Köstler H; Rüde U; Smith AS J Phys Condens Matter; 2017 Mar; 29(12):124001. PubMed ID: 28098559 [TBL] [Abstract][Full Text] [Related]
3. Simple model of a planar undulating magnetic microswimmer. Gutman E; Or Y Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013012. PubMed ID: 25122374 [TBL] [Abstract][Full Text] [Related]
4. Load response of shape-changing microswimmers scales with their swimming efficiency. Friedrich BM Phys Rev E; 2018 Apr; 97(4-1):042416. PubMed ID: 29758744 [TBL] [Abstract][Full Text] [Related]
5. Direct measurement of Lighthill's energetic efficiency of a minimal magnetic microswimmer. Calero C; García-Torres J; Ortiz-Ambriz A; Sagués F; Pagonabarraga I; Tierno P Nanoscale; 2019 Oct; 11(40):18723-18729. PubMed ID: 31589226 [TBL] [Abstract][Full Text] [Related]
7. Propulsion Mechanism of Flexible Microbead Swimmers in the Low Reynolds Number Regime. Li YH; Chen SC Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33333847 [TBL] [Abstract][Full Text] [Related]
8. Hydrodynamic collision between a microswimmer and a passive particle in a micro-channel. Purushothaman A; Thampi SP Soft Matter; 2021 Mar; 17(12):3380-3396. PubMed ID: 33644792 [TBL] [Abstract][Full Text] [Related]
9. Motion of microswimmers in cylindrical microchannels. Overberg FA; Gompper G; Fedosov DA Soft Matter; 2024 Mar; 20(13):3007-3020. PubMed ID: 38495021 [TBL] [Abstract][Full Text] [Related]
10. Enhanced motility of a microswimmer in rigid and elastic confinement. Ledesma-Aguilar R; Yeomans JM Phys Rev Lett; 2013 Sep; 111(13):138101. PubMed ID: 24116818 [TBL] [Abstract][Full Text] [Related]
11. Direct numerical simulations of a microswimmer in a viscoelastic fluid. Kobayashi T; Jung G; Matsuoka Y; Nakayama Y; Molina JJ; Yamamoto R Soft Matter; 2023 Sep; 19(37):7109-7121. PubMed ID: 37694444 [TBL] [Abstract][Full Text] [Related]
13. Microswimmer Propulsion by Two Steadily Rotating Helical Flagella. Shum H Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30669288 [TBL] [Abstract][Full Text] [Related]
14. Frequency-dependent higher-order Stokes singularities near a planar elastic boundary: Implications for the hydrodynamics of an active microswimmer near an elastic interface. Daddi-Moussa-Ider A; Kurzthaler C; Hoell C; Zöttl A; Mirzakhanloo M; Alam MR; Menzel AM; Löwen H; Gekle S Phys Rev E; 2019 Sep; 100(3-1):032610. PubMed ID: 31639990 [TBL] [Abstract][Full Text] [Related]
16. Can the self-propulsion of anisotropic microswimmers be described by using forces and torques? ten Hagen B; Wittkowski R; Takagi D; Kümmel F; Bechinger C; Löwen H J Phys Condens Matter; 2015 May; 27(19):194110. PubMed ID: 25923010 [TBL] [Abstract][Full Text] [Related]
17. Numerical modelling of chirality-induced bi-directional swimming of artificial flagella. Namdeo S; Khaderi SN; Onck PR Proc Math Phys Eng Sci; 2014 Feb; 470(2162):20130547. PubMed ID: 24511253 [TBL] [Abstract][Full Text] [Related]