These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Tuning coupling rate to control oscillation quenching in fractional-order coupled oscillators. Liu S; Sun Z; Zhao N Chaos; 2020 Oct; 30(10):103108. PubMed ID: 33138455 [TBL] [Abstract][Full Text] [Related]
8. Bistability in two simple symmetrically coupled oscillators with symmetry-broken amplitude- and phase-locking. Röhm A; Lüdge K; Schneider I Chaos; 2018 Jun; 28(6):063114. PubMed ID: 29960415 [TBL] [Abstract][Full Text] [Related]
9. Chimera death: symmetry breaking in dynamical networks. Zakharova A; Kapeller M; Schöll E Phys Rev Lett; 2014 Apr; 112(15):154101. PubMed ID: 24785041 [TBL] [Abstract][Full Text] [Related]
10. Delayed feedback control of three diffusively coupled Stuart-Landau oscillators: a case study in equivariant Hopf bifurcation. Schneider I Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120472. PubMed ID: 23960230 [TBL] [Abstract][Full Text] [Related]
11. Quenching oscillating behaviors in fractional coupled Stuart-Landau oscillators. Sun Z; Xiao R; Yang X; Xu W Chaos; 2018 Mar; 28(3):033109. PubMed ID: 29604642 [TBL] [Abstract][Full Text] [Related]
12. Amplitude and phase effects on the synchronization of delay-coupled oscillators. D'Huys O; Vicente R; Danckaert J; Fischer I Chaos; 2010 Dec; 20(4):043127. PubMed ID: 21198097 [TBL] [Abstract][Full Text] [Related]
13. Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators. Selivanov AA; Lehnert J; Dahms T; Hövel P; Fradkov AL; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016201. PubMed ID: 22400637 [TBL] [Abstract][Full Text] [Related]
14. Explosive death in nonlinear oscillators coupled by quorum sensing. Verma UK; Chaurasia SS; Sinha S Phys Rev E; 2019 Sep; 100(3-1):032203. PubMed ID: 31640010 [TBL] [Abstract][Full Text] [Related]
16. Transition from homogeneous to inhomogeneous limit cycles: Effect of local filtering in coupled oscillators. Banerjee T; Biswas D; Ghosh D; Bandyopadhyay B; Kurths J Phys Rev E; 2018 Apr; 97(4-1):042218. PubMed ID: 29758758 [TBL] [Abstract][Full Text] [Related]
17. The impact of propagation and processing delays on amplitude and oscillation deaths in the presence of symmetry-breaking coupling. Zou W; Zhan M; Kurths J Chaos; 2017 Nov; 27(11):114303. PubMed ID: 29195315 [TBL] [Abstract][Full Text] [Related]
18. Asymmetry in initial cluster size favors symmetry in a network of oscillators. Majhi S; Muruganandam P; Ferreira FF; Ghosh D; Dana SK Chaos; 2018 Aug; 28(8):081101. PubMed ID: 30180614 [TBL] [Abstract][Full Text] [Related]
19. Additional repulsion reduces the dynamical resilience in the damaged networks. Bera BK Chaos; 2020 Feb; 30(2):023132. PubMed ID: 32113231 [TBL] [Abstract][Full Text] [Related]
20. Quenching of oscillation by the limiting factor of diffusively coupled oscillators. Manoranjani M; Senthilkumar DV; Zou W; Chandrasekar VK Phys Rev E; 2022 Dec; 106(6-1):064204. PubMed ID: 36671171 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]