These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30253597)

  • 1. Enhancement of pressure perturbations in ablation due to kinetic magnetized transport effects under direct-drive inertial confinement fusion relevant conditions.
    Hill DW; Kingham RJ
    Phys Rev E; 2018 Aug; 98(2-1):021201. PubMed ID: 30253597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic modeling of Nernst effect in magnetized hohlraums.
    Joglekar AS; Ridgers CP; Kingham RJ; Thomas AG
    Phys Rev E; 2016 Apr; 93():043206. PubMed ID: 27176417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Generated Magnetic Fields in the Stagnation Phase of Indirect-Drive Implosions on the National Ignition Facility.
    Walsh CA; Chittenden JP; McGlinchey K; Niasse NPL; Appelbe BD
    Phys Rev Lett; 2017 Apr; 118(15):155001. PubMed ID: 28452551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast advection of magnetic fields by hot electrons.
    Willingale L; Thomas AG; Nilson PM; Kaluza MC; Bandyopadhyay S; Dangor AE; Evans RG; Fernandes P; Haines MG; Kamperidis C; Kingham RJ; Minardi S; Notley M; Ridgers CP; Rozmus W; Sherlock M; Tatarakis M; Wei MS; Najmudin Z; Krushelnick K
    Phys Rev Lett; 2010 Aug; 105(9):095001. PubMed ID: 20868167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic reconnection in plasma under inertial confinement fusion conditions driven by heat flux effects in Ohm's law.
    Joglekar AS; Thomas AG; Fox W; Bhattacharjee A
    Phys Rev Lett; 2014 Mar; 112(10):105004. PubMed ID: 24679302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic cavitation and the reemergence of nonlocal transport in laser plasmas.
    Ridgers CP; Kingham RJ; Thomas AG
    Phys Rev Lett; 2008 Feb; 100(7):075003. PubMed ID: 18352564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear ablative Rayleigh-Taylor instability: Increased growth due to self-generated magnetic fields.
    Walsh CA; Clark DS
    Phys Rev E; 2023 Jan; 107(1):L013201. PubMed ID: 36797872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precision mapping of laser-driven magnetic fields and their evolution in high-energy-density plasmas.
    Gao L; Nilson PM; Igumenshchev IV; Haines MG; Froula DH; Betti R; Meyerhofer DD
    Phys Rev Lett; 2015 May; 114(21):215003. PubMed ID: 26066442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field compressing magnetothermal instability in laser plasmas.
    Bissell JJ; Ridgers CP; Kingham RJ
    Phys Rev Lett; 2010 Oct; 105(17):175001. PubMed ID: 21231051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully kinetic Fokker-Planck model of thermal smoothing in nonuniform laser-target interactions.
    Keskinen MJ
    Phys Rev Lett; 2009 Jul; 103(5):055001. PubMed ID: 19792507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revisiting nonlocal electron-energy transport in inertial-fusion conditions.
    Schurtz G; Gary S; Hulin S; Chenais-Popovics C; Gauthier JC; Thais F; Breil J; Durut F; Feugeas JL; Maire PH; Nicolaï P; Peyrusse O; Reverdin C; Soullié G; Tikhonchuk V; Villette B; Fourment C
    Phys Rev Lett; 2007 Mar; 98(9):095002. PubMed ID: 17359162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of supersonic heat-conductivity hyperbolic waves in radiative ablation flows.
    Varillon G; Clarisse JM; Couairon A
    Phys Rev E; 2020 Apr; 101(4-1):043215. PubMed ID: 32422752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct-drive measurements of laser-imprint-induced shock velocity nonuniformities.
    Peebles JL; Hu SX; Theobald W; Goncharov VN; Whiting N; Celliers PM; Ali SJ; Duchateau G; Campbell EM; Boehly TR; Regan SP
    Phys Rev E; 2019 Jun; 99(6-1):063208. PubMed ID: 31330608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional modeling of a plasma in a strong azimuthal magnetic field.
    Leal L; Maximov A; García-Rubio F; Betti R; Ivanov V
    Phys Rev E; 2024 Jan; 109(1-2):015207. PubMed ID: 38366438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic field generation in Rayleigh-Taylor unstable inertial confinement fusion plasmas.
    Srinivasan B; Dimonte G; Tang XZ
    Phys Rev Lett; 2012 Apr; 108(16):165002. PubMed ID: 22680725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topology of megagauss magnetic fields and of heat-carrying electrons produced in a high-power laser-solid interaction.
    Lancia L; Albertazzi B; Boniface C; Grisollet A; Riquier R; Chaland F; Le Thanh KC; Mellor P; Antici P; Buffechoux S; Chen SN; Doria D; Nakatsutsumi M; Peth C; Swantusch M; Stardubtsev M; Palumbo L; Borghesi M; Willi O; Pépin H; Fuchs J
    Phys Rev Lett; 2014 Dec; 113(23):235001. PubMed ID: 25526131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of the Biermann Battery and Stabilization of the Thermomagnetic Instability in Laser Fusion Conditions.
    Sherlock M; Bissell JJ
    Phys Rev Lett; 2020 Feb; 124(5):055001. PubMed ID: 32083939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deciphering the kinetic structure of multi-ion plasma shocks.
    Keenan BD; Simakov AN; Chacón L; Taitano WT
    Phys Rev E; 2017 Nov; 96(5-1):053203. PubMed ID: 29347662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetized ablative Rayleigh-Taylor instability in three dimensions.
    Walsh CA
    Phys Rev E; 2022 Feb; 105(2-2):025206. PubMed ID: 35291065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlocal magnetic-field generation in plasmas without density gradients.
    Kingham RJ; Bell AR
    Phys Rev Lett; 2002 Jan; 88(4):045004. PubMed ID: 11801131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.