BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30253773)

  • 1. Widespread effect of N-acetyl-D-glucosamine assimilation on the metabolisms of amino acids, purines, and pyrimidines in Scheffersomyces stipitis.
    Inokuma K; Matsuda M; Sasaki D; Hasunuma T; Kondo A
    Microb Cell Fact; 2018 Sep; 17(1):153. PubMed ID: 30253773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethanol production from N-acetyl-D-glucosamine by Scheffersomyces stipitis strains.
    Inokuma K; Hasunuma T; Kondo A
    AMB Express; 2016 Dec; 6(1):83. PubMed ID: 27699702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis.
    Balagurunathan B; Jonnalagadda S; Tan L; Srinivasan R
    Microb Cell Fact; 2012 Feb; 11():27. PubMed ID: 22356827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic flux analysis for metabolome data validation of naturally xylose-fermenting yeasts.
    Veras HCT; Campos CG; Nascimento IF; Abdelnur PV; Almeida JRM; Parachin NS
    BMC Biotechnol; 2019 Aug; 19(1):58. PubMed ID: 31382948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-Seq of the xylose-fermenting yeast Scheffersomyces stipitis cultivated in glucose or xylose.
    Yuan T; Ren Y; Meng K; Feng Y; Yang P; Wang S; Shi P; Wang L; Xie D; Yao B
    Appl Microbiol Biotechnol; 2011 Dec; 92(6):1237-49. PubMed ID: 22086068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae.
    Papini M; Nookaew I; Uhlén M; Nielsen J
    Microb Cell Fact; 2012 Oct; 11():136. PubMed ID: 23043429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resveratrol production from several types of saccharide sources by a recombinant
    Kobayashi Y; Inokuma K; Matsuda M; Kondo A; Hasunuma T
    Metab Eng Commun; 2021 Dec; 13():e00188. PubMed ID: 34888140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation.
    Hector RE; Mertens JA; Bowman MJ; Nichols NN; Cotta MA; Hughes SR
    Yeast; 2011 Sep; 28(9):645-60. PubMed ID: 21809385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Random UV-C mutagenesis of Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 to improve anaerobic growth on lignocellulosic sugars.
    Hughes SR; Gibbons WR; Bang SS; Pinkelman R; Bischoff KM; Slininger PJ; Qureshi N; Kurtzman CP; Liu S; Saha BC; Jackson JS; Cotta MA; Rich JO; Javers JE
    J Ind Microbiol Biotechnol; 2012 Jan; 39(1):163-73. PubMed ID: 21748309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of aeration on growth, ethanol and polyol accumulation by Spathaspora passalidarum NRRL Y-27907 and Scheffersomyces stipitis NRRL Y-7124.
    Su YK; Willis LB; Jeffries TW
    Biotechnol Bioeng; 2015 Mar; 112(3):457-69. PubMed ID: 25164099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Innovating a Nonconventional Yeast Platform for Producing Shikimate as the Building Block of High-Value Aromatics.
    Gao M; Cao M; Suástegui M; Walker J; Rodriguez Quiroz N; Wu Y; Tribby D; Okerlund A; Stanley L; Shanks JV; Shao Z
    ACS Synth Biol; 2017 Jan; 6(1):29-38. PubMed ID: 27600996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning novel sugar transporters from Scheffersomyces (Pichia) stipitis allowing D-xylose fermentation by recombinant Saccharomyces cerevisiae.
    de Sales BB; Scheid B; Gonçalves DL; Knychala MM; Matsushika A; Bon EP; Stambuk BU
    Biotechnol Lett; 2015 Oct; 37(10):1973-82. PubMed ID: 26087949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioethanol production from mixed sugars by Scheffersomyces stipitis free and immobilized cells, and co-cultures with Saccharomyces cerevisiae.
    De Bari I; De Canio P; Cuna D; Liuzzi F; Capece A; Romano P
    N Biotechnol; 2013 Sep; 30(6):591-7. PubMed ID: 23454083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CMO1 encodes a putative choline monooxygenase and is required for the utilization of choline as the sole nitrogen source in the yeast Scheffersomyces stipitis (syn. Pichia stipitis).
    Linder T
    Microbiology (Reading); 2014 May; 160(Pt 5):929-940. PubMed ID: 24608175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of cytochrome bc1 complex inhibition during fermentation and growth of Scheffersomyces stipitis using glucose, xylose or arabinose as carbon sources.
    Granados-Arvizu JA; Madrigal-Perez LA; Canizal-García M; González-Hernández JC; García-Almendárez BE; Regalado-González C
    FEMS Yeast Res; 2019 Mar; 19(2):. PubMed ID: 30500899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the bioethanol production potential of Scheffersomyces (Pichia) stipitis using validated genome-scale model.
    Parambil LK; Sarkar D
    Biotechnol Lett; 2014 Dec; 36(12):2443-51. PubMed ID: 25129048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. C- and N-catabolic utilization of tricarboxylic acid cycle-related amino acids by Scheffersomyces stipitis and other yeasts.
    Freese S; Vogts T; Speer F; Schäfer B; Passoth V; Klinner U
    Yeast; 2011 May; 28(5):375-90. PubMed ID: 21360752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential fructose effect in Pachysolen tannophilus and Pichia stipitis.
    Bicho PA; Cunningham JD; Lee H
    FEMS Microbiol Lett; 1989 Feb; 57(3):323-7. PubMed ID: 2656391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural insight into
    Son HF; Lee SM; Kim KJ
    Sci Rep; 2018 Nov; 8(1):17442. PubMed ID: 30487522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BLINCAR: a reusable bioluminescent and Cas9-based genetic toolset for repeatedly modifying wild-type
    Reichard WD; Smith SE; Robertson JB
    mSphere; 2023 Aug; 8(4):e0022423. PubMed ID: 37345937
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.