These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30253773)

  • 41. Quantitative proteomics and metabolomics approaches to demonstrate N-acetyl-D-glucosamine inducible amino acid deprivation response as morphological switch in Candida albicans.
    Kamthan M; Mukhopadhyay G; Chakraborty N; Chakraborty S; Datta A
    Fungal Genet Biol; 2012 May; 49(5):369-78. PubMed ID: 22406769
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced production of xylitol from xylose by expression of Bacillus subtilis arabinose:H
    Kim H; Lee HS; Park H; Lee DH; Boles E; Chung D; Park YC
    Enzyme Microb Technol; 2017 Dec; 107():7-14. PubMed ID: 28899489
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Efficient production of L-lactic acid from xylose by Pichia stipitis.
    Ilmén M; Koivuranta K; Ruohonen L; Suominen P; Penttilä M
    Appl Environ Microbiol; 2007 Jan; 73(1):117-23. PubMed ID: 17071782
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Elucidating redox balance shift in Scheffersomyces stipitis' fermentative metabolism using a modified genome-scale metabolic model.
    Hilliard M; Damiani A; He QP; Jeffries T; Wang J
    Microb Cell Fact; 2018 Sep; 17(1):140. PubMed ID: 30185188
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054.
    Rudolf A; Baudel H; Zacchi G; Hahn-Hägerdal B; Lidén G
    Biotechnol Bioeng; 2008 Mar; 99(4):783-90. PubMed ID: 17787015
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Discovery and characterization of novel d-xylose-specific transporters from Neurospora crassa and Pichia stipitis.
    Du J; Li S; Zhao H
    Mol Biosyst; 2010 Nov; 6(11):2150-6. PubMed ID: 20714641
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective.
    Kwak S; Jin YS
    Microb Cell Fact; 2017 May; 16(1):82. PubMed ID: 28494761
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis.
    Agbogbo FK; Coward-Kelly G
    Biotechnol Lett; 2008 Sep; 30(9):1515-24. PubMed ID: 18431677
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metabolomic Analysis of Blood Plasma after Oral Administration of N-acetyl-d-Glucosamine in Dogs.
    Osaki T; Kurozumi S; Sato K; Terashi T; Azuma K; Murahata Y; Tsuka T; Ito N; Imagawa T; Minami S; Okamoto Y
    Mar Drugs; 2015 Aug; 13(8):5007-15. PubMed ID: 26262626
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rapid and marker-free refactoring of xylose-fermenting yeast strains with Cas9/CRISPR.
    Tsai CS; Kong II; Lesmana A; Million G; Zhang GC; Kim SR; Jin YS
    Biotechnol Bioeng; 2015 Nov; 112(11):2406-11. PubMed ID: 25943337
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Genome of the CTG(Ser1) Yeast
    Vega-Estévez S; Armitage A; Bates HJ; Harrison RJ; Buscaino A
    mBio; 2021 Oct; 12(5):e0187121. PubMed ID: 34488452
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Construction and application of multi-host integrative vector system for xylose-fermenting yeast.
    Li H; Fan H; Li Y; Shi GY; Ding ZY; Gu ZH; Zhang L
    FEMS Yeast Res; 2017 Sep; 17(6):. PubMed ID: 28873978
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Yeast-Based Biosynthesis of Natural Products From Xylose.
    Zha J; Yuwen M; Qian W; Wu X
    Front Bioeng Biotechnol; 2021; 9():634919. PubMed ID: 33614617
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A mutation in the COX5 gene of the yeast Scheffersomyces stipitis alters utilization of amino acids as carbon source, ethanol formation and activity of cyanide insensitive respiration.
    Freese S; Passoth V; Klinner U
    Yeast; 2011 Apr; 28(4):309-20. PubMed ID: 21456056
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Engineering Scheffersomyces stipitis for fumaric acid production from xylose.
    Wei L; Liu J; Qi H; Wen J
    Bioresour Technol; 2015; 187():246-254. PubMed ID: 25863201
    [TBL] [Abstract][Full Text] [Related]  

  • 56. N-acetylglucosamine, the building block of chitin, inhibits growth of Neurospora crassa.
    Gaderer R; Seidl-Seiboth V; de Vries RP; Seiboth B; Kappel L
    Fungal Genet Biol; 2017 Oct; 107():1-11. PubMed ID: 28736299
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Anaerobic xylose fermentation by Spathaspora passalidarum.
    Hou X
    Appl Microbiol Biotechnol; 2012 Apr; 94(1):205-14. PubMed ID: 22124720
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Application of Saccharomyces cerevisiae and Pichia stipitis karyoductants to the production of ethanol from xylose.
    Kordowska-Wiater M; Targoński Z
    Acta Microbiol Pol; 2001; 50(3-4):291-9. PubMed ID: 11930997
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cell-recycle batch process of Scheffersomyces stipitis and Saccharomyces cerevisiae co-culture for second generation bioethanol production.
    Ashoor S; Comitini F; Ciani M
    Biotechnol Lett; 2015 Nov; 37(11):2213-8. PubMed ID: 26198848
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis.
    Jeffries TW; Grigoriev IV; Grimwood J; Laplaza JM; Aerts A; Salamov A; Schmutz J; Lindquist E; Dehal P; Shapiro H; Jin YS; Passoth V; Richardson PM
    Nat Biotechnol; 2007 Mar; 25(3):319-26. PubMed ID: 17334359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.