These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 30253928)

  • 1. Protein microarray spots are modulated by patterning method, surface chemistry and processing conditions.
    Clancy KFA; Dery S; Laforte V; Shetty P; Juncker D; Nicolau DV
    Biosens Bioelectron; 2019 Apr; 130():397-407. PubMed ID: 30253928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spot morphology of non-contact printed protein molecules on non-porous substrates with a range of hydrophobicities.
    Mujawar LH; Norde W; van Amerongen A
    Analyst; 2013 Jan; 138(2):518-24. PubMed ID: 23166908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of buffer composition on the distribution of inkjet printed protein molecules and the resulting spot morphology.
    Mujawar LH; van Amerongen A; Norde W
    Talanta; 2012 Aug; 98():1-6. PubMed ID: 22939120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two methods for glass surface modification and their application in protein immobilization.
    Qin M; Hou S; Wang L; Feng X; Wang R; Yang Y; Wang C; Yu L; Shao B; Qiao M
    Colloids Surf B Biointerfaces; 2007 Nov; 60(2):243-9. PubMed ID: 17681764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Humidified microcontact printing of proteins: universal patterning of proteins on both low and high energy surfaces.
    Ricoult SG; Nezhad AS; Knapp-Mohammady M; Kennedy TE; Juncker D
    Langmuir; 2014 Oct; 30(40):12002-10. PubMed ID: 25222734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved biomolecule microarrays by printing on nanoporous aluminum oxide using a continuous-flow microspotter.
    Kim J; Miles A; Gale BK
    Small; 2010 Jul; 6(13):1415-21. PubMed ID: 20564482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic and microscopic characterization of biosensor surfaces with protein/amino-organosilane/silicon structure.
    Awsiuk K; Bernasik A; Kitsara M; Budkowski A; Petrou P; Kakabakos S; Prauzner-Bechcicki S; Rysz J; Raptis I
    Colloids Surf B Biointerfaces; 2012 Feb; 90():159-68. PubMed ID: 22056253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method of printing uniform protein lines by using flat PDMS stamps.
    Zhang W; Xue CY; Yang KL
    J Colloid Interface Sci; 2011 Jan; 353(1):143-8. PubMed ID: 20933241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional (3D) plasma micro-nanotextured slides for high performance biomolecule microarrays: Comparison with epoxy-silane coated glass slides.
    Tsougeni K; Ellinas K; Koukouvinos G; Petrou PS; Tserepi A; Kakabakos SE; Gogolides E
    Colloids Surf B Biointerfaces; 2018 May; 165():270-277. PubMed ID: 29501021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein arrays on high-surface-area plasma-nanotextured poly(dimethylsiloxane)-coated glass slides.
    Vlachopoulou ME; Tserepi A; Petrou PS; Gogolides E; Kakabakos SE
    Colloids Surf B Biointerfaces; 2011 Apr; 83(2):270-6. PubMed ID: 21190814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of functional poly(ethylene glycol) surfaces for the use of antibody microarrays.
    Wolter A; Niessner R; Seidel M
    Anal Chem; 2007 Jun; 79(12):4529-37. PubMed ID: 17516626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inkjet printing for the production of protein microarrays.
    McWilliam I; Chong Kwan M; Hall D
    Methods Mol Biol; 2011; 785():345-61. PubMed ID: 21901611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Method for printing functional protein microarrays.
    Delehanty JB; Ligler FS
    Biotechniques; 2003 Feb; 34(2):380-5. PubMed ID: 12613260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein patterning by microcontact printing using pyramidal PDMS stamps.
    Filipponi L; Livingston P; Kašpar O; Tokárová V; Nicolau DV
    Biomed Microdevices; 2016 Feb; 18(1):9. PubMed ID: 26782964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Pluronic F127 on the distribution and functionality of inkjet-printed biomolecules in porous nitrocellulose substrates.
    Mujawar LH; van Amerongen A; Norde W
    Talanta; 2015 Jan; 131():541-7. PubMed ID: 25281138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creating highly dense and uniform protein and DNA microarrays through photolithography and plasma modification of glass substrates.
    Malainou A; Petrou PS; Kakabakos SE; Gogolides E; Tserepi A
    Biosens Bioelectron; 2012 Apr; 34(1):273-81. PubMed ID: 22386489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UV-defined flat PDMS stamps suitable for microcontact printing.
    Xue CY; Chin SY; Khan SA; Yang KL
    Langmuir; 2010 Mar; 26(5):3739-43. PubMed ID: 19810720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aminosilane micropatterns on hydroxyl-terminated substrates: fabrication and applications.
    Li H; Zhang J; Zhou X; Lu G; Yin Z; Li G; Wu T; Boey F; Venkatraman SS; Zhang H
    Langmuir; 2010 Apr; 26(8):5603-9. PubMed ID: 19947614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Printing biomacromolecules on a bovine serum albumin precursor layer.
    Wang B; Feng J; Gao C
    Macromol Biosci; 2005 Aug; 5(8):767-74. PubMed ID: 16080169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of antibody array substrates and the use of glycerol to normalize spot morphology.
    Olle EW; Messamore J; Deogracias MP; McClintock SD; Anderson TD; Johnson KJ
    Exp Mol Pathol; 2005 Dec; 79(3):206-9. PubMed ID: 16246325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.