BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

592 related articles for article (PubMed ID: 30254119)

  • 1. Chlorate Specifically Targets Oxidant-Starved, Antibiotic-Tolerant Populations of Pseudomonas aeruginosa Biofilms.
    Spero MA; Newman DK
    mBio; 2018 Sep; 9(5):. PubMed ID: 30254119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting Anaerobic Respiration in
    Kim JH; Spero M; Lebig EG; Lonergan ZR; Trindade IB; Newman DK; Martins-Green M
    Adv Wound Care (New Rochelle); 2024 Feb; 13(2):53-69. PubMed ID: 37432895
    [No Abstract]   [Full Text] [Related]  

  • 3. Mechanisms of chlorate toxicity and resistance in Pseudomonas aeruginosa.
    Spero MA; Jones J; Lomenick B; Chou TF; Newman DK
    Mol Microbiol; 2022 Oct; 118(4):321-335. PubMed ID: 36271736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of oxygen limitation on the in vitro antimicrobial susceptibility of clinical isolates of Pseudomonas aeruginosa grown planktonically and as biofilms.
    Field TR; White A; Elborn JS; Tunney MM
    Eur J Clin Microbiol Infect Dis; 2005 Oct; 24(10):677-87. PubMed ID: 16249934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fosfomycin and tobramycin in combination downregulate nitrate reductase genes narG and narH, resulting in increased activity against Pseudomonas aeruginosa under anaerobic conditions.
    McCaughey G; Gilpin DF; Schneiders T; Hoffman LR; McKevitt M; Elborn JS; Tunney MM
    Antimicrob Agents Chemother; 2013 Nov; 57(11):5406-14. PubMed ID: 23959314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tobramycin Adaptation Enhances Policing of Social Cheaters in Pseudomonas aeruginosa.
    Abisado RG; Kimbrough JH; McKee BM; Craddock VD; Smalley NE; Dandekar AA; Chandler JR
    Appl Environ Microbiol; 2021 May; 87(12):e0002921. PubMed ID: 33837019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arginine or nitrate enhances antibiotic susceptibility of Pseudomonas aeruginosa in biofilms.
    Borriello G; Richards L; Ehrlich GD; Stewart PS
    Antimicrob Agents Chemother; 2006 Jan; 50(1):382-4. PubMed ID: 16377718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenazines Regulate Nap-Dependent Denitrification in Pseudomonas aeruginosa Biofilms.
    Lin YC; Sekedat MD; Cornell WC; Silva GM; Okegbe C; Price-Whelan A; Vogel C; Dietrich LEP
    J Bacteriol; 2018 May; 200(9):. PubMed ID: 29463605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel Evolution of Tobramycin Resistance across Species and Environments.
    Scribner MR; Santos-Lopez A; Marshall CW; Deitrick C; Cooper VS
    mBio; 2020 May; 11(3):. PubMed ID: 32457248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motility-Independent Formation of Antibiotic-Tolerant Pseudomonas aeruginosa Aggregates.
    Demirdjian S; Sanchez H; Hopkins D; Berwin B
    Appl Environ Microbiol; 2019 Jul; 85(14):. PubMed ID: 31076438
    [No Abstract]   [Full Text] [Related]  

  • 11. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin.
    Walters MC; Roe F; Bugnicourt A; Franklin MJ; Stewart PS
    Antimicrob Agents Chemother; 2003 Jan; 47(1):317-23. PubMed ID: 12499208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of stress responses to antibiotic tolerance in Pseudomonas aeruginosa biofilms.
    Stewart PS; Franklin MJ; Williamson KS; Folsom JP; Boegli L; James GA
    Antimicrob Agents Chemother; 2015 Jul; 59(7):3838-47. PubMed ID: 25870065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bactericidal Effect of Tomatidine-Tobramycin Combination against Methicillin-Resistant Staphylococcus aureus and Pseudomonas aeruginosa Is Enhanced by Interspecific Small-Molecule Interactions.
    Boulanger S; Mitchell G; Bouarab K; Marsault É; Cantin A; Frost EH; Déziel E; Malouin F
    Antimicrob Agents Chemother; 2015 Dec; 59(12):7458-64. PubMed ID: 26392496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined Treatment of 6-Gingerol Analog and Tobramycin for Inhibiting Pseudomonas aeruginosa Infections.
    Ham SY; Kim HS; Jo MJ; Lee JH; Byun Y; Ko GJ; Park HD
    Microbiol Spectr; 2021 Oct; 9(2):e0019221. PubMed ID: 34704784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potentiation of Aminoglycoside Lethality by C
    Hall CW; Farkas E; Zhang L; Mah TF
    Antimicrob Agents Chemother; 2019 Oct; 63(10):. PubMed ID: 31383655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computationally designed pyocyanin demethylase acts synergistically with tobramycin to kill recalcitrant
    VanDrisse CM; Lipsh-Sokolik R; Khersonsky O; Fleishman SJ; Newman DK
    Proc Natl Acad Sci U S A; 2021 Mar; 118(12):. PubMed ID: 33723058
    [No Abstract]   [Full Text] [Related]  

  • 17. Potentiation of Tobramycin by Silver Nanoparticles against Pseudomonas aeruginosa Biofilms.
    Habash MB; Goodyear MC; Park AJ; Surette MD; Vis EC; Harris RJ; Khursigara CM
    Antimicrob Agents Chemother; 2017 Nov; 61(11):. PubMed ID: 28848007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro analysis of tobramycin-treated Pseudomonas aeruginosa biofilms on cystic fibrosis-derived airway epithelial cells.
    Anderson GG; Moreau-Marquis S; Stanton BA; O'Toole GA
    Infect Immun; 2008 Apr; 76(4):1423-33. PubMed ID: 18212077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic Compensation of Fitness Costs Is a General Outcome for Antibiotic-Resistant
    Olivares Pacheco J; Alvarez-Ortega C; Alcalde Rico M; Martínez JL
    mBio; 2017 Jul; 8(4):. PubMed ID: 28743808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial activity of fosfomycin and tobramycin in combination against cystic fibrosis pathogens under aerobic and anaerobic conditions.
    McCaughey G; McKevitt M; Elborn JS; Tunney MM
    J Cyst Fibros; 2012 May; 11(3):163-72. PubMed ID: 22138067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.