These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

956 related articles for article (PubMed ID: 30254121)

  • 21. Strategies of genomic integration within insect-bacterial mutualisms.
    Wernegreen JJ
    Biol Bull; 2012 Aug; 223(1):112-22. PubMed ID: 22983037
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Symbiont replacements reset the co-evolutionary relationship between insects and their heritable bacteria.
    Mao M; Bennett GM
    ISME J; 2020 Jun; 14(6):1384-1395. PubMed ID: 32076126
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative genomics of a quadripartite symbiosis in a planthopper host reveals the origins and rearranged nutritional responsibilities of anciently diverged bacterial lineages.
    Bennett GM; Mao M
    Environ Microbiol; 2018 Dec; 20(12):4461-4472. PubMed ID: 30047196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Signatures of host/symbiont genome coevolution in insect nutritional endosymbioses.
    Wilson AC; Duncan RP
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10255-61. PubMed ID: 26039986
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Metabolome of Associations between Xylem-Feeding Insects and their Bacterial Symbionts.
    Ankrah NYD; Wilkes RA; Zhang FQ; Aristilde L; Douglas AE
    J Chem Ecol; 2020 Aug; 46(8):735-744. PubMed ID: 31853814
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Syntrophic splitting of central carbon metabolism in host cells bearing functionally different symbiotic bacteria.
    Ankrah NYD; Wilkes RA; Zhang FQ; Zhu D; Kaweesi T; Aristilde L; Douglas AE
    ISME J; 2020 Aug; 14(8):1982-1993. PubMed ID: 32350409
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in Endosymbiont Complexity Drive Host-Level Compensatory Adaptations in Cicadas.
    Campbell MA; Łukasik P; Meyer MC; Buckner M; Simon C; Veloso C; Michalik A; McCutcheon JP
    mBio; 2018 Nov; 9(6):. PubMed ID: 30425149
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Match and mismatch between dietary switches and microbial partners in plant sap-feeding insects.
    Bell-Roberts L; Douglas AE; Werner GDA
    Proc Biol Sci; 2019 May; 286(1902):20190065. PubMed ID: 31088273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromosome-level genome assembly of the aster leafhopper (Macrosteles quadrilineatus) reveals the role of environment and microbial symbiosis in shaping pest insect genome evolution.
    Vasquez YM; Li Z; Xue AZ; Bennett GM
    Mol Ecol Resour; 2024 Apr; 24(3):e13919. PubMed ID: 38146900
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes.
    Moran NA; Tran P; Gerardo NM
    Appl Environ Microbiol; 2005 Dec; 71(12):8802-10. PubMed ID: 16332876
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Symbionts in
    Zhang W; Wang J; Huang Z; He X; Wei C
    Appl Environ Microbiol; 2023 Dec; 89(12):e0137323. PubMed ID: 38047686
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Host-symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs.
    Kikuchi Y; Hosokawa T; Nikoh N; Meng XY; Kamagata Y; Fukatsu T
    BMC Biol; 2009 Jan; 7():2. PubMed ID: 19146674
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria.
    Hosokawa T; Kikuchi Y; Nikoh N; Shimada M; Fukatsu T
    PLoS Biol; 2006 Oct; 4(10):e337. PubMed ID: 17032065
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci.
    Rao Q; Rollat-Farnier PA; Zhu DT; Santos-Garcia D; Silva FJ; Moya A; Latorre A; Klein CC; Vavre F; Sagot MF; Liu SS; Mouton L; Wang XW
    BMC Genomics; 2015 Mar; 16(1):226. PubMed ID: 25887812
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The evolution of host-symbiont dependence.
    Fisher RM; Henry LM; Cornwallis CK; Kiers ET; West SA
    Nat Commun; 2017 Jul; 8():15973. PubMed ID: 28675159
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Facultatively intrabacterial localization of a planthopper endosymbiont as an adaptation to its vertical transmission.
    Michalik A; C Franco D; Szklarzewicz T; Stroiński A; Łukasik P
    mSystems; 2024 Jul; 9(7):e0063424. PubMed ID: 38934538
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Winding paths to simplicity: genome evolution in facultative insect symbionts.
    Lo WS; Huang YY; Kuo CH
    FEMS Microbiol Rev; 2016 Nov; 40(6):855-874. PubMed ID: 28204477
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural diversity of symbionts and related cellular mechanisms underlying vertical symbiont transmission in cicadas.
    Wang D; Huang Z; Billen J; Zhang G; He H; Wei C
    Environ Microbiol; 2021 Nov; 23(11):6603-6621. PubMed ID: 34390615
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Symbiont Acquisition and Replacement as a Source of Ecological Innovation.
    Sudakaran S; Kost C; Kaltenpoth M
    Trends Microbiol; 2017 May; 25(5):375-390. PubMed ID: 28336178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The reduced genome of a heritable symbiont from an ectoparasitic feather feeding louse.
    Alickovic L; Johnson KP; Boyd BM
    BMC Ecol Evol; 2021 Jun; 21(1):108. PubMed ID: 34078265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 48.