BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 30254155)

  • 21. Optical detection of target molecule induced aggregation of nanoparticles by means of high-Q resonators.
    Witzens J; Hochberg M
    Opt Express; 2011 Apr; 19(8):7034-61. PubMed ID: 21503017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel elastic scattering model for the understanding of the Anomalous transmittance for Au nanoparticle layer.
    Yang JS; Sung JH; O BH
    Opt Express; 2010 Jun; 18(13):13418-24. PubMed ID: 20588472
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tunable optical coupler controlled by optical gradient forces.
    Fong KY; Pernice WH; Li M; Tang HX
    Opt Express; 2011 Aug; 19(16):15098-108. PubMed ID: 21934871
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inside-out disruption of silica/gold core-shell nanoparticles by pulsed laser irradiation.
    Prasad V; Mikhailovsky A; Zasadzinski JA
    Langmuir; 2005 Aug; 21(16):7528-32. PubMed ID: 16042490
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Near-infrared single-photons from aligned molecules in ultrathin crystalline films at room temperature.
    Toninelli C; Early K; Bremi J; Renn A; Götzinger S; Sandoghdar V
    Opt Express; 2010 Mar; 18(7):6577-82. PubMed ID: 20389681
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells.
    Lasne D; Blab GA; Berciaud S; Heine M; Groc L; Choquet D; Cognet L; Lounis B
    Biophys J; 2006 Dec; 91(12):4598-604. PubMed ID: 16997874
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flexible ultraviolet random lasers based on nanoparticles.
    Lau SP; Yang H; Yu SF; Yuen C; Leong ES; Li H; Hng HH
    Small; 2005 Oct; 1(10):956-9. PubMed ID: 17193376
    [No Abstract]   [Full Text] [Related]  

  • 28. Femtogram-scale photothermal spectroscopy of explosive molecules on nanostrings.
    Biswas TS; Miriyala N; Doolin C; Liu X; Thundat T; Davis JP
    Anal Chem; 2014 Nov; 86(22):11368-72. PubMed ID: 25329453
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Laser fabrication of large-scale nanoparticle arrays for sensing applications.
    Kuznetsov AI; Evlyukhin AB; Gonçalves MR; Reinhardt C; Koroleva A; Arnedillo ML; Kiyan R; Marti O; Chichkov BN
    ACS Nano; 2011 Jun; 5(6):4843-9. PubMed ID: 21539373
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of interfering optical fields in the trapping and melting of gold nanorods and related clusters.
    Deng HD; Li GC; Dai QF; Ouyang M; Lan S; Gopal AV; Trofimov VA; Lysak TM
    Opt Express; 2012 May; 20(10):10963-70. PubMed ID: 22565719
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimal detection angle in sub-diffraction resolution photothermal microscopy: application for high sensitivity imaging of biological tissues.
    Miyazaki J; Tsurui H; Kawasumi K; Kobayashi T
    Opt Express; 2014 Aug; 22(16):18833-42. PubMed ID: 25320969
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmon-enhanced depolarization of reflected light from arrays of nanoparticle dimers.
    Walsh GF; Forestiere C; Dal Negro L
    Opt Express; 2011 Oct; 19(21):21081-90. PubMed ID: 21997116
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoshell-enabled photothermal cancer therapy: impending clinical impact.
    Lal S; Clare SE; Halas NJ
    Acc Chem Res; 2008 Dec; 41(12):1842-51. PubMed ID: 19053240
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gold Nanorod Rotary Motors Driven by Resonant Light Scattering.
    Shao L; Yang ZJ; Andrén D; Johansson P; Käll M
    ACS Nano; 2015 Dec; 9(12):12542-51. PubMed ID: 26564095
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles.
    Zharov VP; Mercer KE; Galitovskaya EN; Smeltzer MS
    Biophys J; 2006 Jan; 90(2):619-27. PubMed ID: 16239330
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Super-resolution nonlinear photothermal microscopy.
    Nedosekin DA; Galanzha EI; Dervishi E; Biris AS; Zharov VP
    Small; 2014 Jan; 10(1):135-42. PubMed ID: 23864531
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing the Sensitivity of Single-Particle Photothermal Imaging with Thermotropic Liquid Crystals.
    Chang WS; Link S
    J Phys Chem Lett; 2012 May; 3(10):1393-9. PubMed ID: 26286788
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative comparison of delta P1 versus optical diffusion approximations for modeling near-infrared gold nanoshell heating.
    Elliott AM; Schwartz J; Wang J; Shetty AM; Bourgoyne C; O'Neal DP; Hazle JD; Stafford RJ
    Med Phys; 2009 Apr; 36(4):1351-8. PubMed ID: 19472642
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low-power photothermal probing of single plasmonic nanostructures with nanomechanical string resonators.
    Schmid S; Wu K; Larsen PE; Rindzevicius T; Boisen A
    Nano Lett; 2014 May; 14(5):2318-21. PubMed ID: 24697597
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluorescence nanoscopy with optical sectioning by two-photon induced molecular switching using continuous-wave lasers.
    Fölling J; Belov V; Riedel D; Schönle A; Egner A; Eggeling C; Bossi M; Hell SW
    Chemphyschem; 2008 Feb; 9(2):321-6. PubMed ID: 18200483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.