These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 30254155)

  • 41. Arrays of dual nanomechanical resonators for selective biological detection.
    Ramos D; Arroyo-Hernández M; Gil-Santos E; Tong HD; Van Rijn C; Calleja M; Tamayo J
    Anal Chem; 2009 Mar; 81(6):2274-9. PubMed ID: 19281261
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nanoscale subsurface- and material-specific identification of single nanoparticles.
    Nuño Z; Hessler B; Ochoa J; Shon YS; Bonney C; Abate Y
    Opt Express; 2011 Oct; 19(21):20865-75. PubMed ID: 21997096
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Resonant scattering-enhanced photothermal microscopy.
    Li Q; Shi Z; Wu L; Wei H
    Nanoscale; 2020 Apr; 12(15):8397-8403. PubMed ID: 32239001
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy.
    Van de Broek B; Grandjean D; Trekker J; Ye J; Verstreken K; Maes G; Borghs G; Nikitenko S; Lagae L; Bartic C; Temst K; Van Bael MJ
    Small; 2011 Sep; 7(17):2498-506. PubMed ID: 21744495
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis and NIR optical properties of hollow gold nanospheres with LSPR greater than one micrometer.
    Xie HN; Larmour IA; Chen YC; Wark AW; Tileli V; McComb DW; Faulds K; Graham D
    Nanoscale; 2013 Jan; 5(2):765-71. PubMed ID: 23233034
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Application of femtosecond-laser induced nanostructures in optical memory.
    Shimotsuma Y; Sakakura M; Miura K; Qiu J; Kazansky PG; Fujita K; Hirao K
    J Nanosci Nanotechnol; 2007 Jan; 7(1):94-104. PubMed ID: 17455477
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Subdiffraction scattered light imaging of gold nanoparticles using structured illumination.
    Chang BJ; Lin SH; Chou LJ; Chiang SY
    Opt Lett; 2011 Dec; 36(24):4773-5. PubMed ID: 22179879
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Far-field photothermal microscopy beyond the diffraction limit.
    Zharov VP
    Opt Lett; 2003 Aug; 28(15):1314-6. PubMed ID: 12906074
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication of metallized nanopores in silicon nitride membranes for single-molecule sensing.
    Wei R; Pedone D; Zürner A; Döblinger M; Rant U
    Small; 2010 Jul; 6(13):1406-14. PubMed ID: 20564484
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 52. One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering.
    Lin CH; Jiang L; Chai YH; Xiao H; Chen SJ; Tsai HL
    Opt Express; 2009 Nov; 17(24):21581-9. PubMed ID: 19997399
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hybrid surface-enhanced Raman scattering substrate from gold nanoparticle and photonic crystal: maneuverability and uniformity of Raman spectra.
    Wu CY; Huang CC; Jhang JS; Liu AC; Chiang CC; Hsieh ML; Huang PJ; Tuyen le D; Minh le Q; Yang TS; Chau LK; Kan HC; Hsu CC
    Opt Express; 2009 Nov; 17(24):21522-9. PubMed ID: 19997393
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Three-dimensional mapping of single gold nanoparticles embedded in a homogeneous transparent matrix using optical second-harmonic generation.
    Butet J; Bachelier G; Duboisset J; Bertorelle F; Russier-Antoine I; Jonin C; Benichou E; Brevet PF
    Opt Express; 2010 Oct; 18(21):22314-23. PubMed ID: 20941132
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of dopamine concentration and surface coverage of Au shell on the optical properties of Au, Ag, and Ag(core)Au(shell) nanoparticles.
    Bu Y; Lee S
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3923-31. PubMed ID: 22833686
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ultrasmall gold nanoparticles anchored to graphene and enhanced photothermal effects by laser irradiation of gold nanostructures in graphene oxide solutions.
    Zedan AF; Moussa S; Terner J; Atkinson G; El-Shall MS
    ACS Nano; 2013 Jan; 7(1):627-36. PubMed ID: 23194145
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions.
    Richardson HH; Carlson MT; Tandler PJ; Hernandez P; Govorov AO
    Nano Lett; 2009 Mar; 9(3):1139-46. PubMed ID: 19193041
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres.
    Skala MC; Crow MJ; Wax A; Izatt JA
    Nano Lett; 2008 Oct; 8(10):3461-7. PubMed ID: 18767886
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Plasmonic nanoclusters with rotational symmetry: polarization-invariant far-field response vs changing near-field distribution.
    Rahmani M; Yoxall E; Hopkins B; Sonnefraud Y; Kivshar Y; Hong M; Phillips C; Maier SA; Miroshnichenko AE
    ACS Nano; 2013 Dec; 7(12):11138-46. PubMed ID: 24187975
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Laser fabrication of 2D and 3D metal nanoparticle structures and arrays.
    Kuznetsov AI; Kiyan R; Chichkov BN
    Opt Express; 2010 Sep; 18(20):21198-203. PubMed ID: 20941016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.